LiTell: Robust Indoor Localization Using Unmodified Light Fixtures

Chi Zhang, Xinyu Zhang

Department of Electrical and Computer Engineering University of Wisconsin-Madison

MobiCom'16

Indoor Localization: Enabling Technology

RF-based Localization

Multiple factors compromise robustness

- Multipath propagation
- Environmental dynamics
- Device heterogeneity

Visible Light Localization

- LoS propagation: robust, multipath-free
- Densely deployed landmarks: **high accuracy** Existing works show **10cm** to **1m** accuracy¹

[1] Y.-S. Kuo, et al., "Luxapose", MobiCom'14; L. Li, et al, "Epsilon", NSDI'14

Deployment Challenges

LED beacons needs **extra circuits** Adds to **manufacturing cost**

Deployment Challenges

LED beacons needs **extra circuits** Adds to **manufacturing cost** Huge **retrofitting effort**

Image of lights: S. Schmid, et al. "Linux Light Bulbs", VLCS'15

Deployment Challenges

- Landmark: unmodified fluorescent light fixtures
- Sensor: smartphone cameras

• Zero retrofitting cost!

Localization Using Incumbent Lights

Fluorescent light driver operates at high frequency This frequency is reflected in the light emission It is unique due to manufacturing variations, hence we call it "characteristic frequency" (CF)

Localization Using Incumbent Lights

Fluorescent light driver operates at high frequency

This frequency is reflected in the **light emission**

It is unique due to manufacturing variations,

Characteristic Frequency (CF)

7 lights in our lab

Characteristic Frequency (CF)

7 lights in our lab

Capturing CF on Phones

COTS phones do not have **high speed light sensors**.

Instead, we can use **cameras**.

Key Challenges:

- Low sampling rate
- Low SNR

Sampling CF

Rolling shutter: a primer

Key benefits: higher sampling rate, reliable timing

Typical smartphone has sampling rate of **56** ~ **105** kHz

CFs are around 80 ~ 100 kHz, need Nyquist sampling rate > 200 kHz

Typical smartphone has sampling rate of **56** ~ **105** kHz

CFs are around 80 ~ 100 kHz, need Nyquist sampling rate > 200 kHz

Observation: CF is extremely sparse

Solution: leverage aliasing effect (If the analog bandwidth suffices!)

Sampling CF

- Camera's analog bandwidth: up to 200 kHz
- Adaptive exposure to avoid notches
- **De-aliasing** mechanism to disambiguate CF

Noise from **dark areas** / **ambient sunlight** reduces SNR.

Noise from **dark areas** / **ambient light** reduces SNR. **SNIS**: fast spatial noise removal tailored for lights

Artifacts:

• Interleaving: from camera

• Spatial patterns: from light cover

Identifying individual lights: collision rate grows as more lights are added in database

Error control mechanism: using pairs of consecutive lights

Localization with Respect to a Specific Light

Observation: images are scaled from physical structure

Implementation

Send ceiling light samples

Return current location

LiTell Android App

Experimental Evaluation

Robustness

Accuracy

• User study

Distance: up to 2m with typical smartphone camera

Distance: up to 2m with typical smartphone camera

Ambient light: works by the window with direct sun light

Distance: up to 2m with typical smartphone camera

Ambient light: works by the window with direct sun light

User behavior: unaffected by normal pose and walking

Light Identification Accuracy

Landmark Identification: 90.3% accuracy in typical places

Localization Precision

Localization w.r.t. each light: 10cm in ideal case, ~**25cm** when walking

1 office building, 2 floors, 6 targets, 10 volunteers. **Find room by number.**

1 office building, 2 floors, 6 targets, 10 volunteers. **Find room by number.**

Conclusion

- LiTell uses fluorescent lights as zero-cost location landmarks
- LiTell turns smartphone cameras into high speed light sensors

Cost

Accuracy Reliability

- Deterministic visible light channel assures LiTell's accuracy and robustness
- LiTell brings accurate visible light localization to today's buildings

Thanks!