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ABSTRACT
The past decade’s research in visible light positioning (VLP) has led
to technologies with high location precision. However, existing VLP
systems either require specialized LEDs which hinder large-scale
deployment, or need cameras which preclude continuous localiza-
tion because of high power consumption and short coverage. In this
paper, we propose Pulsar, which uses a compact photodiode sen-
sor, readily fit into a mobile device, to discriminate existing ceiling
lights—either fluorescent lights or conventional LEDs—based on
their intrinsic optical emission features. To overcome the photodi-
ode’s lack of spatial resolution, we design a novel sparse photogram-
metrymechanism,which resolves the light source’s angle-of-arrival,
and triangulates the device’s 3D location and even orientation. To
facilitate ubiquitous deployment, we further develop a light regis-
tration mechanism that automatically registers the ceiling lights’
locations as landmarks on a building’s floor map. Our experiments
demonstrate that Pulsar can reliably achieve decimeter precision
in both controlled environment and large-scale buildings.

CCS CONCEPTS
• Computer systems organization → Special purpose sys-
tems; •Hardware→ Signal processing systems; Sensors and
actuators; Sensor applications and deployments; Sensor de-
vices and platforms;
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1 INTRODUCTION
Indoor localization represents the enabling technology behind a
huge space of location-based services, including human/robot navi-
gation, targeted advertisement, inventory control, healthcare moni-
toring, augmented reality, etc. Recent research has led to solutions
that deliver decimeter level accuracy under controlled experimental
settings [24, 26]. Unfortunately, none of such solutions has widely
penetrated the real-world. A recent pilot study of state-of-the-art
indoor localization systems [33] concluded that indoor localization
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Figure 1: Pulsar’s architecture.

persists as a grand challenge, primarily because no existing solu-
tion simultaneously satisfies desired properties of high accuracy,
reliability and low cost.

The visible light positioning (VLP) technology has shown po-
tential to fill the gap. VLP employs “smart LEDs” as location land-
marks, and photodiodes (PDs) [31, 55, 66] or cameras [26, 40, 58, 64]
as sensors. The dense overhead deployment of light fixtures, and
multipath-free propagation profile, together enable VLP’s high spa-
tial resolution and resilience to environmental dynamics. Existing
VLP technologies have achieved meter [31, 40] or decimeter preci-
sion [26, 58, 64], when using PD and camera, respectively.

However, two fundamental limitations have been impeding the
adoption of VLP: (i) Requirement for specially designed smart LED
bulbs, which modulate the light signals to create unique beacon
IDs. Such bulbs are substantially more costly and bulkier than
commercial LEDs or fluorescent lights (FLs) [48], which hinders
near-term mass deployment. In fact, even the basic LEDs only make
up around 7% of commercial/industrial lighting, and may take 10+
years towards wide penetration [49], mainly because FL fixtures
have already dominated the market and retrofitting/updating cost
is formidable. (ii) Dependence on regular light shape and angular
response. VLP systems that employ RSS-based light propagation
models commonly assume Lambertian radiation patterns [3, 31],
which are applicable only to round-shaped LED bulbs (Sec. 2.1). A
camera offers high spatial resolution and can unleash VLP from
RSS models [26, 64]. A recent camera-based VLP system, LiTell [64],
works even for conventional FLs. But the camera’s narrow field-
of-view (FoV), high power consumption (∼2 watts [64]) and high
processing latency (∼2 seconds [64]) prevent it from supporting
pervasive, real-time, energy efficient location tracking. The limi-
tation to FLs also makes LiTell a transition solution as LEDs will
eventually take over.

In order to overcome the limitations of conventional VLP sys-
tems, we introduce Pulsar in this paper. Pulsar builds on recent
measurement observations [64] which identified the intrinsic high-
frequency flickering patterns inside FLs using cameras. Yet Pulsar
targets more ambitious design goals that are conducive to ubiqui-
tous location-based services: (i) working under both LEDs and
incumbent FLs in existing buildings; (ii) using energy-efficient
“single-pixel” PDs, but still able to resolve 3D location with similar



precision as the million-pixel cameras [64]; (iii) realizing continuous,
seamless coverage as users roam around in practical building envi-
ronment; (iv) allowing easy integration with mobile applications,
and easy deployment with minimal bootstrapping overhead.

Fig. 1 illustrates the main components and workflow of Pul-
sar. Pulsar uses PD as its light sensor, which reduces the power
consumption by several folds compared with camera-based VLP
systems. In addition, owing to PDs’ much higher dynamic range,
Pulsar can capture LEDs’ intrinsic frequencies that aremuchweaker
than FLs’, and even when the LEDs are more than 9m away (Sec. 3),
in contrast to camera-based solutions [64] that only work within
a range of 2.5m even for FLs. This salient property enables Pulsar
to capture multiple lights simultaneously even when the lights
are sparsely deployed on high ceilings, and obtain location fixes
virtually without any blind spots.

Unfortunately, such benefits come with new challenges: (i) Near-
far interference. The frequency features of faraway lights often
mix with the weak side-peak artifacts of close-by lights and get
masked, making it hard to distinguish collocated lights. (ii) Lack of
spatial resolution. In contrast to the million-pixel camera, the PD is
a single-pixel intensity sensor, which provides no spatial resolution
and cannot easily identify its geometrical relation with different
lights.

Pulsar’s key solution principle lies in a novel mechanism, re-
ferred to as sparse photogrammetry, which resolves the light source’s
angle-of-arrival (AoA) using a compact light sensor. Pulsar’s light
sensor comprises two PDs with different FoVs1, and hence different
angular response patterns. The differential response between the
two PDs follows a nonlinear function with the AoA, which can be
calibrated and known at manufacturing time. At runtime, Pulsar
can measure the differential response and map it back to the light
source’s AoA. By using AoA instead of RSS, Pulsar also circum-
vents the Lambertian model, enabling localization with lights of any
shape. By combining the AoA of adjacent light sources, Pulsar can
pinpoint the device’s 3D location through a triangulation model.
When more than 3 lights fall in its FoV, the Pulsar sensor can even
compute its orientation angles. On the other hand, to solve the
near-far problem, we observe that all frequency components of
the same light have the same AoA, which allows us to single out
a light’s intrinsic frequency, even when it is immersed in other
nearby lights’ frequency components.

Full deployment of an indoor localization system requires know-
ing the landmarks’ locations a priori, a problem often overlooked
by existing localization systems. Pulsar uses a light registration
mechanism to greatly simplify the issue: it only requires a one-
time bootstrapping procedure, where a surveyor walks across the
lights inside a building, while the lights’ frequency features are
captured by Pulsar, and lights’ locations automatically registered
on a publicly available floor map and stored in a database. Follow-
ing any subsequent change of light fixtures, the database can be
incrementally updated based on user devices’ feedback.

We have conducted a full-fledged implementation of Pulsar. The
Pulsar sensor is prototyped as a USB dongle, plugged in an Android
phone that runs the localization algorithms. Owing to the use of

1Defined as the double-sided incident angle where RSS is halved in comparison to
RSS at 0◦ . Unlike cameras, a PD can still sense light sources outside its FoV.

lightweight PDs, we expect Pulsar can readily augment new gener-
ations of smartphones, robots or low-power IoT devices that need
location-based services [4, 25, 29, 36]. We have further implemented
the light registration mechanism along with a simple user interface.

Our experiments verify Pulsar’s high accuracy, robustness, and
usability. In controlled setups similar to many existing VLP systems
[26, 31, 40, 58], Pulsar can achieve 10 cm of median location preci-
sion. In practical building environments, Pulsar can easily detect 3
or more lights within its FoV, achieving a median localization error
of 0.6 m and heading direction error of 4◦ while walking. More
importantly, Pulsar is robust to typical usage dynamics, such as the
device’s orientation variation and ambient sunlight interference.
Our prototype implementation incurs a response latency of 840 ms,
ready for real-time location queries, and a low power consumption
of 150 mW even without duty-cycling.

To summarize, our contributions in Pulsar include: (i) A sparse
photogrammetrymechanism that enables single-pixel PDs to sense a
light source’s AoA, and then pinpoint their own locations and head-
ing direction. (ii) A light identification framework that enables a PD
to discriminate LEDs/FLs whose frequency features interfere with
each other; (iii) Validation of Pulsar based on a full-fledged imple-
mentation including an automatic landmark registration scheme.

2 AUGMENTING PHOTODIODES WITH AOA
SENSING

2.1 Why AoA?
Prior PD based VLP systems [3, 31] commonly adopt round
LED bulbs whose angular emission pattern follows a Lambertian
model, but commercial light fixtures present several key barriers
to such RSS-based models: (i) The light fixtures are commonly
tube/rectangular shaped, yielding different channel responses along
different directions. So the RSS modeling will need the PD’s loca-
tion in the first place. (ii) The light fixture may have complicated
reflective structures and covers which reshape the emission pattern
[41]. (iii) Static and dynamic blockages such as ceiling decorators
and people passing by may partially block the light, causing unpre-
dictable deviation in RSS. In addition, due to aging and inevitable
hardware deviation, different lights’ emission power can vary, even
among the same type of lights [5, 37, 41, 57]. All these factors render
RSS propagation modeling unusable in real indoor environments.

To understand these challenges, we use our light sensor proto-
type (Sec. 6) to measure the RSS of light sources across different
irradiance angles (defined in Fig. 2), at 1m distance. We measure
two representative tube lights (with and without the diffuser cover,
shown in Fig. 3), commonly used in commercial buildings. We then
measure the light intensity with sensor facing towards the light,
and normalize it against intensity at 0◦. From the results in Fig. 4,
we see that the Lambertian model deviates from the measured RSS
by up to 6dB, which translates into a few meters of error when
the PD is a few meters away from the light [31]. Worse still, the
angular response of the same light can change with viewing an-
gle, meaning that a precise RSS propagation model requires the
location/orientation of the PD a priori.

In summary, for robustness and ubiquity, the VLP system should
work independently from lights’ emission characteristics such as
angular response and intensity. However, this almost forbids the
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use of RSS modeling. An AoA model can naturally avoid such
problems, because it approximates the light as a point source, whose
irradiation angle is unaffected by its shape, partial occlusion, and
intensity variation.

2.2 Pulsar’s AoA Sensing: Model and Principles
Harnessing the million-pixel sensors and high spatial resolution, a
camera can easily extrapolate the physical geometries of multiple
luminaries in an overhead scene image into 2-dimensional AoA
information. This so-called photogrammetry technique [26] can
arguably provide the most accurate and reliable geometrical infor-
mation [3], albeit at the cost of higher power consumption, limited
FoV, etc. In this section, we describe how Pulsar uses single-pixel
PDs to obtain AoA while overcoming camera’s inherent limitations
(Sec. 1).

2.2.1 AoA Sensing Using Single-Pixel PDs. The key innovation
of Pulsar lies in a dual-PD light sensor. Pulsar uses the differential an-
gular responses between the 2 PDs to obtain 1-D AoA (i.e., incident
angle between incoming light and the PD’s center axis, illustrated
in Fig. 2), which will in turn feed Pulsar’s sparse photogrammetry
localization algorithm (to be discussed in Sec. 4).

More specifically, the RSS between each light source and the PDs
follows a generic channel model [31, 63]:

RSS1 = PtAt (θ1)α(r1)Ar1(ϕ1)

RSS2 = PtAt (θ2)α(r2)Ar2(ϕ2) (1)
where Pt is the emission power of the light. At (θ ) is the irradiance
angular response at irradiance angle θ ; α(r ) is the propagation loss
at distance r , andAr i (ϕ) is the incident angular response of the i-th
PD at incident angle ϕ 2. Since the 2 PDs are most likely co-located
on a mobile device, with negligible separation compared with r , we
can safely assume θ1 = θ2, r1 = r2 and ϕ1 = ϕ2 = ϕ. By dividing
2Note thatAr i (ϕ) = cosϕ only when the receiver follows the ideal Lambertian model
and has 120◦ FoV.

the linear RSS observed by the 2 PDs, all other factors related to the
emission/intensity characteristics of the light will cancel out:

RSS1
RSS2

=
Ar1(ϕ)

Ar2(ϕ)
= Ac (ϕ) (2)

Inverting Eq. (2) and we can obtain the 1-D AoA or incident angle:

ϕ = A−1c

(
RSS1
RSS2

)
(3)

Note that RSSi can be measured in real-time by each PD at
each frequency. The composite angular response Ac = Ar1/Ar2 is
essentially a function that maps AoA to the differential response
between the 2 PDs. Each PD’s response function Ar i is fixed and is
known through data-sheet or a one-time factory calibration, which
in turn allows us to derive Ac as a static lookup table.

The above model builds on three approximations: (i) For A−1c
to be a valid function, Ac needs to be monotonic, at least within a
range of AoA. (ii) The two PDs bear the same AoA relative to a
light source. (iii) The light source can be approximated as a point
source from the PDs’ perspective in terms of area. We now validate
these approximations through measurements.

2.2.2 Accuracy of AoA model. We first verify the monotonic
relation between AoA andAc , using different PD combinations. We
test 3 PDs with different FoVs: 40◦(Vishay BPV10), 80◦(Everlight
PD333) and 120◦(OSRAM BPW34). Fig. 5 plots the actual angular
responses of the PDs, measured by rotating the PD using a pro-
grammable motion controller [12] while illuminated by a LED. Note
that the measured FoV often deviates from the nominal rating in
the datasheet, which necessitates a one-time factory calibration of
the angular response.

To verify the AoA model, we measure the composite angular
response Ac of different narrow+wide PD combinations: BPW34
+ BPV10 and BPW34 + PD333, respectively. Fig. 6 shows that Ac
indeed grows monotonically with AoA up to a certain threshold,
beyond which it starts to drop, making A−1c ambiguous. The thresh-
old AoA equals 28◦ and 57◦, translating to usable FoV of 56◦ and
114◦ for the two combinations, which is much wider than most
smartphone cameras (around 70◦ [2]). For both combinations, the
monotonic region is slightly larger than the FoV of the PD with
narrower FoV. In practice, to ensure a one-to-one mapping between
AoA andAc , Pulsar only usesAc when it falls in the monotonic region.

We also notice a tradeoff between FoV and spatial resolution for
the dual-PD sensor. The wider-FoV combination BPW34 + PD333
has lower spatial resolution — the composite angular response Ac
is flat at near-zero AoA region, which can induce ambiguities. This
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is because PDs with larger FoV have flatter angular response at
lower AoA values. We expect combining 3 or more PDs can make a
better tradeoff and provide even larger FoV. For simplicity, the rest
of paper will use the BPW34 + PD333 combination, and leave other
possibilities for future work.

2.2.3 Impact of PD Arrangement. Our AoA model assumes the
two PDs are arbitrarily close and experience the same optical chan-
nel. But in practice, they have to be physically separated, inducing
certain anisotropy. To evaluate the impact on AoA sensing, we
place Pulsar’s dual-PD sensor 3 m below a ceiling light, and rotate
it to 500 random but known directions using the motion controller.
Since the PDs have a very small form-factor, they are placed ap-
proximately 5 mm apart. The scatter plot in Fig. 7 and CDF in Fig. 8
indicate that the 90-percentile errors are less than 5◦ within the
ambiguity-free region for all cases. This implies the dual-PD can be
abstracted as a single sensor, receiving lights isotropically.

2.2.4 Point-source Approximation. When using a PD to sense a
large light fixture (e.g., tube lights in a rectangular housing) at close
distance, the light spans across a large range of incident angles.
The equivalent angular response will be a smoothed version of the
original one, which may break the point-source approximation and
introduce error in AoA.

To quantify the ultimate impact, we place a CFL lamp at various
distances, leading to different levels of response smoothing. Using
the same measurement methods as in Fig. 7, we found that even
in the extreme case with 1m distance, the mean AoA error is only
4◦ (Figs. 8 and 9). And it reduces to 3◦ and 2◦ at 2m and 3.75m,
respectively.

Further, we repeat the experiments with tube FLs (T8 type,
Fig. 3A). The results (Figs. 10 and 11) show that when placed 2
m below the ceiling, Pulsar’s mean AoA sensing error is below 6◦,
and 90-th percentile below 13◦. Interestingly, the error does not
change with direction (Sec. 2.2.3), as the amount of smoothing in
the PD’s angular response does not vary. Overall, the point-source
assumption well approximates reality.
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3 DISCRIMINATING LIGHT LANDMARKS
USING FREQUENCY FEATURES

Since 3-D localization requires 1-D AoA information from multiple
landmarks, Pulsar’s sensor must be able to simultaneously discrimi-
nate the lights and compute the AoA of each. This requires adjacent
light fixtures to emit uniquely identifiable signals that do not inter-
fere with each other when captured by the PD. Most existing VLP
systems use modified LEDs which modulate the optical signals to
meet these requirements [26, 31, 58]. Meanwhile, LiTell [64] pro-
posed a way to discriminate unmodified FLs, based on the fact that
their driver works by oscillating [35, 43, 51], and manufacturing tol-
erance [45] leads to unique interference-free oscillating frequencies,
referred to as characteristic frequencies (CFs).

As in LiTell, Pulsar aims to discriminate the lights using their
CFs as features. When capturing multiple lights simultaneously,
LiTell can isolate the lights’ signals because their locations differ
on the camera image. In contrast, the use of single-pixel PDs brings
two unique challenges to Pulsar. (i) Near-far interference. A light’s
emission spectrum comprises not only the CF, but also various
spurious frequencies. The spurious signals from nearby/brighter
lights can overwhelm the CF features from further/dimmer ones,
making them unidentifiable. (ii) Lack of spatial resolution. Previous
work [64] utilizes relation between consecutively located lights
to facilitate error correction, while Pulsar’s sensor cannot resolve
spatial relation. This limits Pulsar’s light identifying accuracy when
collision happens. In the following sections, we describe how Pulsar
meets these challenges.

3.1 Light Feature Extraction
To elucidate the near-far interference problem, we use a PD sensor
(Sec. 6) to sample and analyze the frequency-domain spectrum of
representative luminaries offline, including tube FL, compact FL
(CFL), and LED. From the plots in Fig. 12(a)-(c), we see that each
type of light manifests a peak CF, but accompanied by numerous
side peaks 3. Fig. 12(d) further shows the mixed light spectrum in
an office room, with tube FL fixtures separated 1.2m apart on the
ceiling. The PD sensor has 120◦ FoV, faces upwards and sits 4m
below the ceiling. The ground-truth CF is measured by turning
on each light separately. We can see that the PD captures the CFs

3Diversity of CFs within each model of light has been validated by [64].
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Algorithm 1: Algorithm for light extraction.
input :P – spectrum peaks with sufficient RSS; ϵAoA –

tolerance (minimum difference in AoA/RSS-ratio)
output :L – CFs

sortByRSS(P)

L ← �

for p ∈ P do
L.add(p), P.remove(p)
for q ∈ P do

if |q.AoA - p.AoA| < ϵAoA then
P.remove(q)

of 6 lights simultaneously. However, the faraway lights’ CFs are
immersed in the spurious peaks caused by close-by lights. Thus,
unlike camera-based LiTell system [64] which only needs to extract
the single strongest peak in the spectrum, we cannot single out
every frequency by picking the strongest frequency components.
In effect, there is even no easy way to identify the number of lights
within the spectrum.

To overcome this challenge, note that we can use the model in
Sec. 2.2 to compute the AoA of the signals corresponding to each
individual frequency peak. We observe that if different frequency
peaks have the same AoA, it is likely that they originated from the
same light source. Therefore, we first sort the peaks in the spectrum
by their AoAs, and then pick the strongest peak for each unique
AoA, which corresponds to the true CF of one light. We repeat this
until the remaining peaks become negligible (likely to be noise).

To verify the feasibility of this AoA-based light extraction, we set
up one tube FL inside a darkroom. We then use our AoA sensor to
receive the light signal, while moving the sensor up and down, just
like walking. Fig. 13 shows that the RSS ratio is indeed consistent
across different frequency components from the same light, as long
as RSS’s from both PDs are sufficient.

Alg. 1 summarizes the procedure of CF extraction in Pulsar. Note
that since the AoA value is derived from RSS difference from 2 PDs,
a slight difference in frequency responses of the 2 amplifiers may
cause slightly different AoAs to be observed at each frequency. As
a result, we empirically set a tolerance to the RSS ratio (0.5dB in
our experiments) when merging spectrum peaks with similar AoAs,
according to experimental results for a single light in the dark room.
Meanwhile, when 2 lights have similar AoAs, the weaker one will
be removed. Such similar AoAs often come from co-located lights,
and thus will not reduce the number of effective lights.

Occasionally, frequency components of 2 different lights may col-
lide (fall within 2 FFT bins), which may distort the AoA. However, it
will only result in spurious detection under the following additional
conditions: (i) Both lights have sufficient RSS and their perceived RSS
ratio is distorted by more than 0.5dB. Either their RSS at the colliding
frequency is comparable4, or a different light dominates each PD.
(ii) RSS at the colliding frequency is higher than any other lights with
similar perceived AoA. In practice, we find this situation to be rare
throughout our experiments.

3.2 Identifying Multiple Lights without Spatial
Knowledge

Despite the diversity of the CF, occasionally there exist remotely sep-
arated luminaries with barely distinguishable CF values. LiTell [64]
mitigated such CF collisions by combining two consecutively sam-
pled lights, which provides a form of spatial error correction and
greatly lowers possibility of CF feature collision. But it requires the
user to travel across at least 2 lights, thus precluding instantaneous
location fix without any user intervention. In contrast, Pulsar’s
PD-based sensor can resolve a group of lights’ CFs simultaneously,
which enhances feature diversity without user intervention, but
entails a new challenge. Unlike camera [64], PD has no spatial
resolution and cannot recognize whether two lights are adjacent.

To overcome this barrier, for each measurement observation of
the light signals, Pulsar uses all the CFs it extracts (Sec. 3.1) as a
feature collection, denoted asL. It then searches for the set of lights
in the database whose CFs are closest to L in terms of Euclidean
distance. Given the large number of lights in each building, a brute-
force search among all possible group combinations is infeasible.
However, we can prune the search space based on two observations:
(i) Frequency error of each light. Existing measurement study [64]
showed that the CF feature is highly diverse even among lights in
the same building (99% of the lights have CFs separated more than
20Hz). It is also stable, varying only by tens of Hz across weeks.
Therefore, for each element in L, it suffices to put the few database
candidates with closest CF into the search space. (ii) Physical dis-
tance between each identified light. Since within each observation
the sensor should see lights which are near each other, groups that
have candidates with large distance (computed with the candidates’
registered locations) are also likely to be incorrect matches. We
thus combine these two factors into a score that describes how
likely a match is valid. These two factors can be weighted and we
empirically give them equal weight when values are in kHz and
meters. In addition, we use the score as a confidence value for each
light, which is later used for optimizing the reliability of localization
(Sec. 4). Alg. 2 summarizes the above procedure which identifies
the group of lights in one measurement observation.

3.3 Sensitivity and Coverage
Ideally, Pulsar needs to ensure multiple lights’ CF features are
detectable to realize blind-spot free location sensing. Existing work
re-purposed smartphone cameras to extrapolate the lights’ CFs
[64]. Due to their narrow FoV [2] and low dynamic range, a camera
can only capture a single light in office buildings with typical light

4If RSS’s of the 2 lights are within 9dB, the summed RSS would be higher than both
lights by more than 0.5dB, and the error in RSS ratio may exceed 0.5dB.



Algorithm 2: Algorithm for group light matching.
input :L – CFs; ϵ = 500Hz – maximum CF error; N = 2 –

number of candidates; B – CF database
output :E – light identities

for l ∈ L do
l .candidates← {b ∈ B|ϵ > |l .CF − B.CF|}
sortByError(l .candidates)
truncate(l .candidates, N)

C ← candidateCombinations(L)

for D ∈ C do
score(L, D)

E ← {D ∈ C|D has lowest score}

Procedure score(features L, candidates D)
ϵd ← 0, ϵf ← 0
for d ∈ D do

ϵd ← ϵd+meanDistance(d , {d ′ , d ∈ L})

for l ∈ L,d ∈ D do
ϵf ← ϵf + |l .CF − d .CF|

D.score= (ϵd + ϵf )/|L|

density/height [64]. In contrast, Pulsar’s PD sensor, owing to wider
FoV and higher dynamic range (typically 30dB higher than CMOS
cameras [38, 61]), should easily observe more than 3 lights in the
same environment (see measurement results in Sec. 3.3). We now
conduct experiments to verify how close Pulsar can be to this ideal.

Impact of distance. How far need the light/PD to be separated
to ensure detectable CF? We answer the question by experimenting
with two PDs of different FoVs (40◦ and 120◦), and a GE CFL with
15W power, which is conservative compared with most commercial
lighting fixtures (20W - 78W [50]). We also set up a Philips 8.5W
LED bulb, with the same 800-lumen output as the CFL. To isolate
the impact of incident angle, we pose the PD and lights so that
they face each other directly. Then we measure the signal-to-noise
ratio (SNR) between the CF component and the noise floor on the
received light spectrum. The results in Fig. 14 show that the CFL’s
SNR decreases over distance, but remains above 26dB even at a
distance of 8m. Considering the much higher emission power and
high density of commercial tube FLs [50], we expect Pulsar to easily
capture multiple lights’ CF features simultaneously in real-world
buildings. Note that the narrower PD has higher SNR due to higher
angular gain.

The LEDs’ CF feature is relatively weaker, but still 16dB above
the noise floor at 8m distance. The weaker feature is due to the
fact that LEDs are driven by DC and manufacturers usually employ
filters on outputs of LED drivers to suppress flicker. As a contrast,
we note that the camera-based CF detection system [64] only works
for FL, and its SNR drops close to 0dB even at a short distance of
2.5m. In addition, we have followed the methodology in [64], and
tested the CF diversity in a college building with 179 LEDs, which is
the only large-scale LED deployment nearby. There are 2 different
light models. The first covers 120 LEDs whose CFs roughly follow a
distributionN(89.092, 0.831) kHz, while the CFs of the other model
are scattered between 18 and 77 kHz. We found the LEDs exhibit

diverse CFs just as the FLs measured in [64], albeit at weaker SNR
which is not discernible by cameras.

Joint impact of ceiling height and light density. The actual
number of lights Pulsar can capture in practical indoor environ-
ments depends on not only the lights’ height/density, but also rela-
tive angle to the PD sensor. Since it is infeasible to test all buildings,
we synthetically generate different height/density configurations,
and use the SNR-to-distance trace in the foregoing experiment to
compute the number of CFL bulbs visible to a PD. In addition to
distance, the signal intensity is also scaled by the angular gains
due to the light’s irradiation angle (from the bulb) and incidental
angle (into the PD), assuming the PD faces upwards and each light
source has roughly 20 W power. For simplicity but without loss
of generality, we only simulate round-shaped CFL with known
gain patterns. A bulb is considered visible to the PD if the signal
corresponding to its CF exceeds an SNR of 3dB.

From the results (Fig. 16), we observe that the number of observ-
able lights increases with higher light density (smaller spacing). It
also grows with ceiling height despite the increase in propagation
loss. By analyzing the data, we observe that as long as the PD sensor
has > 80◦ FoV (which is quite common for commodity PDs), it can
observe 3+ lights in most practical settings (spacing < 4m, height
> 2m).

Impact of ambient light interference. Sunlight may affect
VLP when it operates near the window or under skylights. To test
whether Pulsar can work under strong ambient light, we place its
sensor dongle (Sec. 6) by a west-facing window on a sunny day, 2m
below a tube FL. We started measurements at 1:30 PM when the
sunlight starts to shine through the window, and stop at 7:00 PM
close to sunset. The sensor dongle has its TIA gain configured to
a low value of 1kΩ to avoid saturation, and the second stage gain
is set to 300×. Fig. 15 shows that the sensor remains at high SNR
and does not saturate even under direct sunlight (approx. 35 kLux).
Since the sunlight has no flicking frequency, it does not interfere
Pulsar as long as saturation does not occur. This is salient property
is harnessed in Pulsar’s 2-stage amplifier design (Sec. 6) that is only
sensitive to flickering light.

4 LOCALIZATIONWITH SPARSE
PHOTOGRAMMETRY

Once Pulsar identifies multiple lights within its sensor’s FoV (Sec-
tion 3) and computes the AoA relative to each light (Section 2), it
uses simple geometrical models to derive the sensor’s location. We
now introduce how the models work, under common light density
(3+ lights within FoV) and extremely sparse deployment.

4.1 3D Location Fix with 3+ Lights
Without loss of generality, we assume Pulsar’s dual-PD to be in-
stalled on a smartphone’s front-face, just like the current light sen-
sor and front-camera. Denote the phone’s location asK = (x ,y,−h),
where (x ,y) is its 2D coordinate and h the vertical distance to the
ceiling. The light i’s location Li = (xi ,yi , 0) is known from Pulsar’s
light registration mechanism (Sec. 5), and stored in an online data-
base. Further, denote the unit normal vector of the phone’s surface
as N = (a,b, c), which can be measured by standard smartphone
motion sensors (compass, gyroscope, and accelerometer) [67]. The
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line vector from phone to light PLi = (xi − x ,yi − y,h) is parallel
to the direction of incoming light beam. By definition, the AoA ϕi
is the angle between the light beam and the normal vector of the
phone’s surface (Fig. 2), so we have:

cosϕi =
N · PLi
|N| |PLi |

=
a(xi − x) + b(yi − y) + ch√
(xi − x)2 + (yi − y)2 + h2

(4)

since |N| = 1 by design.
Eq. (4) is the core equation that enables Pulsar’s sparse pho-

togrammetry localization. To resolve the 3 unknowns representing
the phone’s location, we need AoA measurements from at least 3
lights to form a system of equations. When n > 3 lights are sensed,
we can turn the equation solving into a minimization problem:

K = argmin
h>0

n∑
i=0

wi

(
N · PLi
|N| |PLi |

− cosϕi
)2

(5)

which essentially finds the location vector that best fits the AoA
measurements to all lights. Herewi represents the matching con-
fidence for light i (Sec. 3.2), which acts as a weight to prevent
occasionally mismatched lights from disturbing the location com-
putation.

4.2 Circumventing Unreliable Compass
Information Using 4+ Lights

Compasses can measure the phone’s azimuth angle, but are notori-
ous for its poor accuracy indoor due to magnetic interferences from
metal structures [13, 42, 60]. To overcome this limitation, Pulsar
can treat azimuth as a variable in the system of Eq. (4), and use 4 or
more lights to solve for both 3D location and azimuth. To this end,
we note that the normal vector N can be rewritten as a function of
azimuth α , roll β and pitch γ based on rotation matrix5:

N = ( cosα sinγ + cosγ sin β sinα ,
− sinγ sinα + cosγ cosα sin β ,
cosγ cos β) (6)

The pitch γ and roll β angles are measured by the accelerom-
eters relative to the direction of gravity. They have proven to be
reliable in indoor environment [42, 67]. So we only solve for the
azimuth variable α along with x , y, h, following the same minimiza-
tion problem in Eq. (5). More generally, given 6 or more lights, we

5The rotation matrix has many forms depending on definition of the axis and order of
the rotation. Here we use the version that matches the Android API [19].

may even resolve the γ and β without any motion sensors, achiev-
ing both 3D location and 3D orientation sensing. But this entails
ultra-high density light deployment and will not be covered in our
experiments.

4.3 Identifying the Nearest of 2 Lights
Pulsar can fall back to coarse-grained light-cell level localization
when insufficient number (≤ 2) of lights are simultaneously visible
to populate the system of Eq. (4). This fallback mode requires Pulsar
to identify the light closest to the phone, which can still afford
meter-scale location granularity, depending on the light density.

Far-away lights have larger irradiance angle and hence lower
angular gain, as well as higher propagation loss. However, the
nearest light does not necessarily yield the highest RSS. Ambiguities
can be introduced by variations of lights’ output power and PD’s
angular response, as evident from the channel model in Eq. (1). The
former effect is negligible compared to the distance attenuation
[57], especially because most buildings prefer homogeneous light
sources. To combat the latter variation (i.e., RSS uncertainty due to
PD’s orientation), we leverage the PD’s known angular response
w.r.t. the measured AoA ϕi of the light i . More specifically, we
can compensate for the angular response to obtain the true RSS:
RSS′ = RSS/Ar1(ϕi ). Then the light with the highest RSS′ always
has the shortest distance to the PD.

In Pulsar, the cell-level location is also used to seed the initial
point of the nonlinear minimization problem in Eq. (5) and acceler-
ate its convergence. It also helps identify each overhead lights in
the light registration process (Sec. 5).

5 LIGHT REGISTRATION ON MAP
Ubiquitous deployment of VLP requires a scalable way of survey-
ing the landmark locations in the first place. Prior VLP systems
[3, 26, 31, 40] assume a priori knowledge of the light fixtures’ loca-
tions, but actually, even the “smart” LEDs do not know their own
locations. The lights’ locations and identities have to be associated
manually, either by programming the bulbs or via a separate data-
base. Pulsar’s light registration scheme solves this problem. Simply
put, it requires a one-time survey of the lights inside a building,
which automatically registers the lights’ locations on the building’s
floor plan image, and stores the results in Pulsar’s database, elimi-
nating the need for physically measuring the location of each light.
The lights’ locations can be translated into physical locations given
the scale of the floor map.
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More specifically, a surveyor needs to start under a light with
known location (on the map), hold a Pulsar receiver and walk across
each of the ceiling lights inside the target building. Meanwhile, the
surveyor’s walking trajectory is tracked using existing inertial-
tracking methods. When Pulsar detects a light (manifested by an
RSS peak), it records the light’s CF and marks its 2D location the
same as the surveyor’s current location (ceiling height is assumed
known).

Our Pulsar prototype employs Google’s Tango tablet to track the
surveyor’s trajectory. Tango combines cameras and inertial sensors
to achieve decimeter precision [16] with its visual-inertial odom-
etry (VIO). Due to inevitable drift of the inertial sensors, Tango’s
precision degrades over long distances. So we partition the survey-
ing process into sections, each starting from a light with known
location on map. The residual errors are small and can be com-
pensated through manual adjustment on the map, considering the
ceiling lights have highly regular separations. The compensation
can also be automated through geometrical fitting and computer
vision, but this is beyond the scope of our current work. We note
that Pulsar is not tied to the Tango device — advances in robotics
have enabled high-precision VIO using commodity smartphone
cameras and motion sensors [8, 28].

We emphasize that the VIO methods work under several as-
sumptions that are tolerable for controlled one-time surveying, but
cannot substitute Pulsar’s real-time localization: certain anchor
points exist whose locations are known to the user device; the sur-
rounding environment scene is static; the walking speed is low and
needs to be regular. In addition, the camera operations incur high
power consumption and are unsuitable for continuous localization
battery-powered devices.

Further, note that the CF features depend on the lights’ hard-
ware and have shown to be highly stable over multiple weeks [64].
We have also conducted a year-long measurement of 8 randomly
sampled lights in an office building. We found that the CFs are also
stable at annual scale, with monthly and year-to-year average drift
less than 10 Hz for most of the lights, as shown in Fig. 17, which
is stable enough for reliable long-term identification [64]. In the
longer term, a light’s CF feature may change due to failure, aging
or replacement. Such changes will manifest as a consistent single-
light mismatch when users run the light identification algorithm
(Section 3). Therefore, Pulsar can detect such outage events, and
update its light database automatically, keeping the overhead of
re-registration to a minimum.

Finally, the light registration should not be confused with the
fingerprinting procedure in signature-based localization systems
[44, 59]. The fingerprinting entails extensive survey of all locations,
whereas Pulsar only needs a one-time walk-through of all light
landmarks which are much sparser.

6 IMPLEMENTATION
Dual-PD light sensor.We design a custom light sensor that can
be plugged into mobile devices with USB ports (Fig. 18). The sensor
contains an STM32F103C8T6 microcontroller, which samples the
signals from 2 PDs (BPW34 and PD333). The MCP6024 quad opera-
tional amplifier is used to form 2 transimpedance amplifiers and 2
voltage amplifiers, which condition the signals before they enter
the microcontroller. The entire prototype costs around $30, while a
production version built into the phone (Sec. 8) will be significantly
cheaper.

The firmware running on the microcontroller uses DMA and
timer to drive 2 internal ADCs, which sample 2 PDs simultaneously
at 300Ksps with 8-bit depth. Since the ADCs are directly timed by
the hardware timer, jitter and artifacts in sampling are kept to a
minimum, ensuring highly accurate spectrum analysis. The sampled
data are buffered in a 16 KB ring buffer before being transferred to
the mobile device via 12 Mbps USB 2.0 full speed. We use a rigid
USB OTG adapter so Euler angles of the device and the dongle are
kept the same.

Android app and registration software. As illustrated in
Fig. 19, the Pulsar Android app comprises a few modules: UI
(map/location display), 3-D position solver, database, light iden-
tification, signal processing and dongle communication. The light
identification first runs FFT on the samples (streamed from the
dongle) to obtain the spectrum, and then simultaneously extracts
multiple lights’ CFs and match their identities, following Sec. 3.
The app then looks up a local database that maps each light’s CF
to its location. Then, the RSS of each light’s CF feature feeds the
differential channel response, which is mapped to the light’s AoA
(Sec. 2). Finally, Pulsar computes the sensor’s 3D location and head-
ing direction (Sec. 4), and presents the information in the UI.

We implement the dongle driver part in native C code with JNI
to allow best real-time performance and avoid discontinuities in
samples, which can introduce severe artifacts in spectrum analysis.
We use a modified version of libusb [14] together with Android’s
USB Host API to provide access to the USB dongle in C code with-
out requiring root privilege. Some of the signal processing and the
location solver are also implemented in C since they require func-
tions such as nonlinear minimization from a numerical library. We
pick GNU Scientific Library (GSL) [17] as our numerical library and
have ported it to Android. The database and PDs’ calibration data
are stored in pure text, providing the lights’ identification number,
CF, and physical locations. All other components are implemented
in Java with standard Android API.

The inertial tracking for the light registration process (Sec. 5)
is provided by the Tango tablet [20] since it has a complete and
ready-to-use visual-inertial odometry (VIO) implementation. Many
other monocular VIO techniques emerged recently in the robotic
navigation field [8, 16], which have shown comparable tracking
precision as Tango. But the implementations are either kept in
private or constrained to a specific smartphone model. We have
also implemented a graphical application on PC that allows the
surveyor to fit the motion trace to floor plans and save the results
as the database (Fig. 20).
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Figure 20: Light registration application running
on a PC, generating the light database.

Figure 21: Photos of test venues:
aisles with tube FLs (upper); an
atrium with CFLs (lower).
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Table 1: A comparison between LiTell and Pulsar.
Ceiling height a Coverage b ID accuracy c Battery life d Latency Light registration Orientation Requires tube FLs

LiTell ≈ 1m 57.1% 80.5% 2.45 hrs 1.62s e Manual Compass and light Yes
Pulsar > 9m 99.8% 94.4% 6.67 hrs 0.84s f Automatic Compass or light No
a From phone to a 15W cabinet tube FL. b By area in an office building aisle. c For single measurement with tube FLs. d Nexus 5, full battery cycle, screen
turned off, maximum update rate. Active idling alone last ≈11 hrs. e 7 pictures, ≈ 5 Hz spectral resolution. f 100,000-point FFT, 3 Hz resolution.

7 PERFORMANCE EVALUATION
We evaluate Pulsar’s performance both through controlled experi-
ments like existing VLP systems [26, 31], and through field tests in
two environments: the aisles of an office building and the atrium
of an activity center (Fig. 21). The aisles have tube FLs arranged
linearly, 4.5m apart on 3m ceiling, while the atrium has 2 rings of
CFLs spaced 1.5m apart on a 4m ceiling. For the light identification
test, we include an additional library setting with densely deployed
tube FLs on 2.8m ceiling. All computations are performed on the
smartphone, with the self-contained Pulsar App. For the light regis-
tration mechanism, its landmark location precision depends on the
external inertial tracking mechanism and can be manually adjusted
during bootstrapping (Sec. 5). So we omit the tests for it.

7.1 Accuracy of Light Identification
We run Pulsar’s multi-light identification algorithm over databases
built for the test venues with light registration. The aisle, atrium,
and library involve 64, 110 and 157 lights, each with 2-3 models
of lights 6, respectively. For each venue, we hold the sensor, move
to 1000 random locations, and compare the identification results
with the database ground-truth. Further, we simulate the identifi-
cation for smart LEDs with randomly allocated frequencies, with
frequency drifts following N (0, 5) Hz and N (0, 10) Hz distribution,
since we could not find a building with smart-bulbs deployed in
6 CF range: aisle 88∼93 and 137∼148 kHz; atrium 81∼86, 103∼114 and 129∼134 kHz;
library 58∼65 and 88∼90 kHz.

large scale. We observed that the number of lights that Pulsar
captures within its FoV varies from 3 to 6 in each measurement.
In addition, with incumbent lights, in 92.5% of the time, Pulsar’s
light identification mechanism matches every single light correctly
(Fig. 22, label ‘All’). In 92.6% of the cases, Pulsar can identify at least
3 lights correctly (Fig. 22, label ‘3+’). If smart-bulbs are employed,
the accuracy further rises to 93% - 100% (Fig. 23), depending on
the number of lights and allocated bandwidth. The identification
accuracy also shows high consistency across measurements, pri-
marily owing to the homogeneous light layout in most buildings.
Note that the wrongly matched lights in one capture are usually
deemphasized by low weights (Sec. 4.1), which lessens their impact
on the final localization result.

7.2 Accuracy of Sparse Photogrammetry
To receive from multiple lights, Pulsar’s sensor must be able to
extract frequency and AoA information from sources with highly
diverse RSS simultaneously. Therefore, the sensor must work under
a wide range of RSS. Its FoV and ambiguity-free range (Sec. 2) also
needs to guarantee that it can “see” enough number of lights under
low ceiling, sparse deployment scenarios. In the following experi-
ments, we set up a controlled environment similar to existing VLP
systems [26, 31] to evaluate Pulsar’s performance under different
settings. Specifically, we arrange 23W CFLs in a linear array, whose
spacing and height (w.r.t. the sensor) can be flexibly adjusted. Unless
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noted otherwise, we repeat the experiment 500 times under each
configuration.

3D localization accuracy. Fig. 24 shows Pulsar’s localization
performance across different ceiling heights, with 4 CFLs placed
1.5m apart and sensor placed flat. Pulsar achieves very high pre-
cision for both 2D and height localization (label ‘H’), thanks to
its AoA-based sensing scheme. The median error is 5cm for 2D
localization (x ,y) and 20cm for height (h), when the sensor is held
2m below the ceiling. The result is highly consistent across ex-
periments, with 90-th percentile error close to the mean, due to
the determinism and multipath-free propagation profile of visible
lights. Under a high ceiling height of 4m, due to weaker RSS, the
median error increases slightly, to 6cm and 31cm, for (x ,y) and h,
respectively. In an extreme test where the height grows to 6 m, we
observe a large systematic error–the estimated locations are rela-
tively tightly packed, but deviate from ground truth for more than
1m. However, note that typical commercial lights [50] use much
higher emission power than our CFLs. Therefore, we expect Pul-
sar’s sparse photogrammetry can provide accurate sub-light level
localization under common luminaires and ceiling height settings.

Fig. 25 shows Pulsar’s localization accuracy under different sep-
arations of the 4 CFLs, while height is maintained at 4m. We no-
tice that Pulsar’s localization error in h remains roughly the same,
whereas the 2D localization precision degrades as the separation
increases (median error 0.07m, 0.72m, and 1.27m, for 1.5m, 2m, and
2.5m separation, respectively). Further analysis shows the major
source of error comes from the lateral direction w.r.t. the light array,
as the RSS becomes much weaker from lights near the tail.

To verify that Pulsar behaves consistently for different types of
lights, we compare Pulsar’s localization accuracy between 4 CFLs
and 4 T8 tube FLs. The tube FLs are enclosed in diffusive covers,
arranged with 1.2m separation in between. Pulsar’s sensor is placed
2m below the ceiling. Fig. 26 shows that Pulsar’s 2D localization
performance degrades by only about 10cm when we switch from
CFL to tube FL, although the area of the light is larger by at least 10×.
This echoes the micro-benchmark in Sec. 2.2.4. It further verifies
that Pulsar’s point source assumption holds in practical scenarios
and does not become the bottleneck in location accuracy.

Pulsar’s 3D localization mechanism requires at least 3 lights.
Ideally, adding more lights should improve accuracy. However,
since the visible light channel is very deterministic and AoA sensor
suffers from very little interference, we observed that increasing
the number of lights does not improve the accuracy significantly
across our experiments.

Accuracy of heading direction estimation.When there are
4+ lights available within FoV, Pulsar can derive the sensor’s normal
vector (same as the smartphone’s), which can substitute the com-
pass and be used to derive the user’s heading direction (Sec. 4.2).
To evaluate the accuracy of heading solving, we hold the sensor
in ∼ 0◦ (roughly flat), 30◦, 45◦ and 60◦ inclinations under one row
of 0.45m-long tube FLs spaced 0.8m apart, with a sensor-to-ceiling
distance of 1.5m. We take 200 samples and compare the error with
ground truth obtained relative to the floor-plan. Fig. 27 shows that
the 90-th percentile error is only 3◦ ∼ 5◦, when the sensor is not
laid flat. When the sensor is paralleling to the ceiling, however,
orientation of the smartphone no longer affects AoA, which means
the orientation can be resolved to arbitrary value, yielding huge er-
rors, while 3D localization results are correct. Since users normally
will not hold the smartphone completely parallel to the ceiling, we
expect this to be a corner case.

Accuracy of nearest light identification. To evaluate the ef-
fectiveness of Pulsar’s nearest light identification, we place 2 CFLs
1.5m apart, and the sensor 2m below. As a stress test, we put the
sensor near the center of the 2 lights’ (x ,y) projection, but slightly
biased to one of them by a short distance of 0.3m to 0.6m. We then
gradually rotate the sensor to the other light and see how often it is
mistaken for the nearest one. To evaluate the reliability in discrimi-
nation, we use the margin in the compensated RSS (RSS′ in Sec. 4.3),
i.e., difference between the compensated RSS of the nearest light
and that of the other light. Each configuration takes 75 trials. From
Figs. 28 and 29, we notice that Pulsar can identify the nearest light
with close to 100% reliability when both lights fall roughly within
the sensor’s ambiguity-free range (Sec. 2.2.2). Once the nearest
light is far out of the ambiguity-free range, error in identification is
likely to happen, especially when the sensor is close to the center of
the 2 lights. Since such extreme case should remain minority, and
localization error caused by wrong identification is limited since
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Figure 32: Localization accuracy within
aisles of an office building.
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Figure 33: Localization accuracy within
an atrium.
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Figure 34: Pulsar’s localization latency.

the receiver is close to the center between 2 lights, we conclude
that Pulsar’s nearest light identification is sufficient as a fallback
mechanism to achieve cell-level location granularity.

Impact of humanmotion.We evaluate impact of user’s move-
ment with a compact setup, which includes one row of 0.45m-long
tube FLs spaced 0.8m apart, placed 1.5m above the sensor. The sen-
sor is first mounted on a tripod with 30◦, 45◦ and 60◦ inclinations,
and then is held by a user walking in the same spot, with device
naturally rotated while walking. Fig. 30 shows that Pulsar’s 2D
localization accuracy does not degrade significantly under user’s
motion, while height estimation does show increased error. In ad-
dition, 90-th percentile error of heading estimation only increased
slightly, from 5◦ to 9◦. We thus conclude Pulsar is robust against
normal user motion, as long as during each sampling period the
AoA remains relatively constant.

7.3 Large-Scale, Real-time Field Tests
In this section, we verify Pulsar’s localization performance in un-
controlled environment in real-time. For each test venue, we found
the light registration process takes only about 10 to 20 minutes per
100 lights, since we just need to sample each light once. We walk
across each venue following a marked route, and then compare the
location traces generated by Pulsar and by Tango’s visual-inertial
odometry algorithm (shown to have sub-meter precision [16]). For a
fair comparison, both run on the same Tango tablet simultaneously.

Fig. 32 and Fig. 33 depict Pulsar’s performance in the aisles of
the office building and the atrium, respectively, with background
showing the floor-plan annotated by Pulsar’s light registration
application. Pulsar shows overall median and 90-th percentile accu-
racy of 0.6m and 1.6m, respectively. Its real-world performance is
comparable to the VIO method which, despite the high precision,
runs costly image processing and can only track relative movement
(Sec. 5). In addition, unlike VIO, Pulsar does not suffer from sensor
drift, thanks to deterministic light propagation and robust AoA
sensing. Note that a few missing spots exist in the location traces,
because of occasional shadowing or location solver failure. These
problems can be avoided by enlarging the FoV and ambiguity-free
range of the sensor (Sec. 2.2.2) and employing better minimization
algorithms (Sec. 4.1) in future.

We have also measured Pulsar’s processing latency within its
Android app. Fig. 34 shows that the end-to-end localization latency
is around 840ms across most of the location queries, which allows
real-time 3D location fix. USB transfer and FFT all contribute to
latency substantially, each making up 16% of total latency. Latency
in extraction process is dominated by peak finding. Both the light
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Figure 35: Power consumption breakdown for (a) the whole
system and (b) the sensor dongle alone.

extraction and location solving run efficiently, costing only up to
tens of milliseconds. Integrating the sensor into smartphones and
eliminating the USB interface, along with sparse spectrum recovery
(Sec. 8) can potentially reduce 1/3 of the latency.

7.4 Power Consumption
We measure Pulsar’s end-to-end energy consumption/battery life
through the sysfs interface [39], and further break the power
consumption down by disabling/disconnecting each component.
Fig. 35(a) shows a system-wide breakdown, where “USB Loss” is
caused by converting the battery voltage up to the USB’s 5V and
then back down to the dongle’s 3.3V; and “Idling” means active
idling with adb over Wi-Fi running. Fig. 35(b) further analyzes the
sensor dongle, where “Sampling” includes ADC, timing, and DMA,
which copies sampled data to the dongle’s buffer. The microcon-
troller CPU of the dongle is responsible for copying data to the USB
interface, whereas it busy waits when the sampling is in progress
since we have not implemented any power-management. The don-
gle only consumes about 45mA of current when sampling (less than
150mW since it takes 3.3V power), which is even lower than WiFi’s
idle listening power [65]. From an end-to-end perspective, it is clear
that Pulsar’s PD-based solution avoids energy-hungry camera sen-
sors and image processing, which leads to a power consumption of
less than half of camera’s power end-to-end (Table 1), despite that
there still exist substantial spaces for optimization (Sec. 8).

8 DISCUSSION
Integrating theAoA sensor intoCOTSphones.With themicro-
lens technology that is widely used in CMOS cameras [15], it is
possible to integrate multiple PDs onto a compact and low-cost chip,
much like the ambient light and proximity sensors used on today’s
smartphones. These sensors usually contain at least 2 PDs [53],
with the proximity sensor already operating at tens to hundreds



of kHz [23]. Unfortunately, due to hardware design and sometimes
merely firmware/software limitation, fine-grained samples from
these sensors are usually not available to applications. We envision
future smartphones can easily integrate such AoA sensors much
like the ambient light sensor, enabling more accurate localization
as well as many other applications.

Further improving energy efficiency. Although the Pulsar
prototype is significantly more energy efficient than camera-based
counterparts[26, 64, 68], its high sampling rate (300 Ksps) provides a
large space for optimization. To achieve reasonable (3 Hz) spectral
resolution, Pulsar runs FFT with a long sample length (100,000
points), which wastes energy. Sparse spectrum recovery techniques
such as bandpass sampling and sFFT [21] can significantly reduce
computational loads, resulting in less power consumption. With
such optimizations, Pulsar may be able to run entirely on energy-
efficient microcontrollers.

Pulsar’s hardware prototype also has space for polishing, such as
integrating the sensor into smartphones to eliminate the costly USB
interfaces, and adopting better hardware components. For example,
a newer version of the microcontroller used [46] consumes less
than 1/3 of the power while providing more computational power.
With proper hardware implementations, Pulsar’s sensor can be
extremely low power and support continuously localization for
battery-operated devices.

9 RELATEDWORK
Existing localization schemes broadly fall into two categories: (i)
Fingerprinting approaches that associate each location spot to a
set of features provided by images [8, 16, 18], acoustics [47], mag-
netic field [11], RF signals [9, 62], or a mix of them [6]. Real-world
tests showed that such features lack stability in the presence of
human activities and environmental changes, and are often not
discriminative enough to offer fine location granularity [32]. More
crucially, they require blanket fingerprinting of all location spots,
which entails huge bootstrapping and maintenance overhead. (ii)
Model-driven approaches that calculate the distance between user
devices and infrastructure landmarks, through models of received
signal strength (RSS) [7, 10], phase [24, 56] or propagation time
[34]. To achieve high location precision, such models often require
specialized hardware like antenna arrays; they tend to be disturbed
by multipath reflections from human bodies and ambient objects
[1, 32].

Motion sensors (accelerometer, gyroscope, and magnetometer)
can track a user’s relative movement via step counting [30], but
need to be calibrated by other approaches that provide absolute
location fixes [52]. State-of-the-art robotic systems often integrate
such sensors with a camera to realize visual-inertial odometry,
which can simultaneously map the environment while tracking
user movement [16]. But the performance suffers in homogeneous
environment (e.g., office hallways) and dynamic environment (e.g.,
retail stores) [8]. The use of cameras entails heavy sensing and
computational power, hence unsuitable for long-term mobile usage.

Compared with these approaches, VLP has several inherent ad-
vantages, especially in its dense overhead anchoring points and
line-of-sight propagation profile that evade interferences from am-
bient environment. Most existing VLP systems employ modulated

LEDs as anchor points to emit beacons. The receiver can either be a
PD or a camera. The key challenge for PD based VLP lies in low spa-
tial resolution. Existing work either uses multi-light trilateration or
requires controlled usermovement to resolve the spatial ambiguities
[31]. Trilateration schemes assume LEDs’ Lambertian radiation pat-
tern, which no longer holds when collimating or diffusing optics are
used for uniform illumination [54]. On the other hand, controlled
device movement disturbs user experience and precludes continu-
ous, real-time localization operations. Camera-based VLP systems
[26, 27] can achieve decimeter precision through photogramme-
try, which maps the geometrical relation between LED luminaries
on a camera image to the camera’s physical location/orientation
[26]. Other systems [55, 58] use physical rotation or electronic po-
larization to create spatial diversity and simplify the sensor-side
workload. All these modulated VLP systems require customized
LEDs with a beaconing circuitry, which adds to the already high
retrofitting cost of LEDs compared with FLs.

Our work was inspired by LiTell [64], which obviates the need for
specialized LEDs. Yet LiTell only works for FLs whose CF features
can be extrapolated from camera images. It is not applicable to LEDs,
which have much weaker CFs, or light fixtures with small areas
that will not leave enough samples in the image. More critically,
cameras’ low dynamic range limits LiTell’s working range to around
2.5 meters, and their narrow FoV causes many blind spots where
the ceiling lights are not directly visible. All these factors, along
with other limitations (Table. 1), hinder continuous localization
services. IDyLL [57] harnesses the regular separation of ceiling
lights to calibrate motion sensors, thus improving dead-reckoning
accuracy. But it needs users to walk in straight lines, and can only
track relative movement. Fiatlux [5] extracts location fingerprints
from minor intensity differences among incumbent lights, yet the
fingerprints vary over time and are sensitive to ambient light and
the sensor’s orientation.

Despite more than a decade of research [22], VLP has not reached
real-world users. By overcoming the high cost [26, 31, 40, 58], high
power consumption [26, 64], and intermittent coverage [26, 64] in
traditional VLP technologies, Pulsar can significantly accelerate the
penetration of VLP.

10 CONCLUSION
To our knowledge, Pulsar represents the first VLP system that
employs incumbent FLs/LEDs and lightweight PDs to achieve con-
tinuous 3D localization with sub-meter precision. It marks a new
step in enabling the ubiquitous deployment of VLP, by solving three
problems: discriminating co-located LEDs/FLs, sensing AoA and
hence 3D location using single-pixel PDs, automatically register-
ing light landmarks. We believe Pulsar’s salient advantages will
enable a wide range of location-based services, including robotic
navigation, physical analytics and augmented reality.
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