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ABSTRACT
The past decade’s research in visible light positioning (VLP) has
achieved centimeter location precision. However, existing VLP sys-
tems either require specialized LEDs which hinder large-scale de-
ployment, or cameras which preclude continuous localization due
to power consumption and short coverage. We propose Pulsar,
which uses a compact photodiode sensor to discriminate existing
ceiling lights based on their intrinsic optical emission features. To
overcome the photodiode’s lack of spatial resolution, we design
a novel sparse photogrammetry mechanism, which resolves the
light’s angle-of-arrival, and triangulates the device’s 3D location
and orientation. To facilitate ubiquitous deployment, we further
develop a light registration mechanism that automatically registers
ceiling lights’ locations on a building’s floor map. Our experiments
demonstrate that Pulsar can reliably achieve decimeter precision
with continuous coverage.

CCS CONCEPTS
• Computer systems organization → Special purpose sys-
tems; •Hardware→ Signal processing systems; Sensors and
actuators; Sensor applications and deployments; Sensor de-
vices and platforms;
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1 INTRODUCTION
Indoor localization is the enabling technology behind a huge space
of location-based services. Yet a recent study of state-of-the-art
indoor localization systems [4] concluded that indoor localization
persists as a grand challenge, as no existing solution simultane-
ously achieve high accuracy, reliability and low cost. Visible light
positioning (VLP) has shown potential to fill the gap. VLP employs
“smart LEDs” as landmarks, and photodiodes (PDs) [3, 6, 10] or cam-
eras [2, 7, 9] as sensors. Dense overhead deployment of lights and
multipath-free propagation enable VLP’s high spatial resolution
and resilience to environmental dynamics. Existing VLP technolo-
gies have achieved meter [3] or decimeter precision [2, 7, 9] with
PD and camera, respectively.
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Figure 1: Pulsar’s architecture.

However, two fundamental limitations are impeding the adop-
tion of VLP: (i) Requirement for specially designed LED bulbs,
which modulate the light signals to create unique beacons, hinders
mass deployment. (ii) Dependence on regular light shape and an-
gular response, as VLP systems utilizing received-signal-strength
(RSS) models assume Lambertian emission [1, 3], which only ap-
plies to round-shaped light fixtures. Cameras unleashes VLP from
RSS models with spatial resolution [2, 9], but its field-of-view (FoV),
power consumption and processing latency preclude pervasive and
continuous location tracking.

Pulsar overcomes these limitations by building on recent mea-
surement observations [9], which captures flickering of fluorescent
lights (FLs) at their characteristics frequencies (CFs), using cameras.
Yet Pulsar targets ubiquitous location-based services: (i) working
under both LEDs and FLs in existing buildings; (ii) achieving similar
precision as cameras but with energy-efficient PDs; (iii) realizing
continuous, seamless coverage; (iv) allowing easy integration and
deployment.

Fig. 1 illustrates the main components of Pulsar. Pulsar uses
PD as its light sensor, which reduces the power consumption by
several folds compared to cameras. Owing to PDs’ dynamic range,
Pulsar can capture LEDs’ CFs, which are much weaker than FLs’,
from more than 9m away, while camera-based solutions only work
within 2.5m even for FLs [9]. This allows Pulsar to capture multiple
lights simultaneously and obtain location fixes without blind spots.

Unfortunately, such benefits come with new challenges: (i) Lack
of spatial resolution. Unlike cameras, PDs cannot provide spatial
resolution or geometrical relations. (ii) Near-far interference. CFs of
faraway lights are often masked by artifacts of closer ones, making
it hard to distinguish them.

Pulsar’s key solution lies in its sparse photogrammetry, which
resolves the light’s angle-of-arrival (AoA) using a compact light
sensor. The sensor comprises two PDs with different FoVs1, and
hence different angular response patterns. The differential response
between the two PDs follows a functionwith the AoA,which is fixed
once manufactured. At runtime, Pulsar measures the differential
RSS and map it back to the light’s AoA. By using AoA instead of
RSS, Pulsar circumvents the Lambertian model and works with
arbitrary light fixtures. By combining the AoA of adjacent lights,
Pulsar can pinpoint the device’s 3D location and even heading

1Defined as the double-sided incident angle where RSS is halved.
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Figure 2: The Pulsar sensor prototype.
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Figure 3: Composite angular response
Ac . Shadowed area show ambiguity-
free AoA range.
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Figure 4: CF and side peaks from: (a) tube
FL, (b) CFL, (c) LED, (d)multiple tube FLs.
Triangles mark CFs.

direction through triangulation. To solve the near-far problem, we
observe that all frequency components of the same light have the
same AoA, which allows us to remove artifacts and extract a light’s
CF even when immersed in other lights’ frequency components.

In addition, Pulsar includes a light registration mechanism to
greatly simplify deployment: it only requires a surveyor to walks
across the lights inside a building, while the lights’ CFs are captured
by Pulsar, and their locations automatically registered on a floor
map stored in a database.

The Pulsar sensor is prototyped as a USB dongle (Fig. 2), plugged
in an Android phone that runs the localization app. We expect
Pulsar can readily augment new generations of smartphones, robots
or low-power IoT devices. We have further implemented the light
registration with a simple user interface. In controlled setups similar
to many existing VLP systems [2, 3, 7], Pulsar can achieve 10cm
of median location precision. While walking in practical building
environments, Pulsar produces a median localization error of 0.6m
and heading direction error of 4◦. Our prototype incurs a response
latency of 840ms, and a low power consumption of 150mW.

2 SYSTEM DESIGN
2.1 AoA Sensing
Cameras can convert geometries of multiple luminaries in an image
into 2D AoA. This so-called photogrammetry technique [2] can
arguably provide the most accurate and reliable VLP [1], albeit with
higher power consumption and limited FoV. To overcome camera’s
limitations, Pulsar uses PDs to obtain AoA. The key innovation
of Pulsar lies in a dual-PD light sensor. Pulsar uses the differential
angular responses between the 2 PDs to obtain 1D AoA, which
feeds Pulsar’s triangulation algorithm.

Specifically, the RSS of each light received by the PDs follows
the channel model [3]:

RSS1 =PtAt (θ1)α(r1)Ar1(ϕ1)
RSS2 =PtAt (θ2)α(r2)Ar2(ϕ2) (1)

where Pt is the emission power of the light. At (θ ) is the irradiance
angular response at irradiance angle θ ; α(r ) is the propagation loss
at distance r , and Ar i (ϕ) is the incident angular response of the
i-th PD at incident angle ϕ. Since the 2 PDs are co-located with
negligible separation compared with r , we can safely assume θ1 =θ2,
r1 =r2 and ϕ1 =ϕ2 =ϕ. By dividing the linear RSS observed by the 2
PDs, all other factors related to the light will cancel out:

RSS1
RSS2

=
Ar1(ϕ)

Ar2(ϕ)
=Ac (ϕ) ϕ =A−1

c

(
RSS1
RSS2

)
(2)

The composite angular response Ac (Fig. 3) is essentially a func-
tion mapping AoA to the RSS ratio between the 2 PDs. Each PD’s
responseAr i is fixed, which allows us to deriveAc as a static lookup
table.

Note that Ac is monotonic only within a certain range, beyond
which the AoA cannot be uniquely determined by RSS ratio. For-
tunately, Pulsar can detect such ambiguity by comparing the ob-
served RSS ratio with the maximum monotonic value (dashed lines
in Fig. 3, 56◦ and 114◦ for wide-FoV and narrow-FoV combinations,
respectively). We also notice a tradeoff between FoV and spatial
resolution for the sensor. The wide-FoV combination (120◦ + 80◦)
has lower spatial resolution than the narrow-FoV (120◦ + 40◦) one,
as the composite angular response Ac is flat at near-zero AoA re-
gion. Combining 3 or more PDs may provide a better tradeoff and
provide even larger FoV.

2.2 Discriminating Light Landmarks
As in LiTell [9], Pulsar discriminates lights by their CFs. When
capturingmultiple lights simultaneously, LiTell can isolate the lights
as their locations differ on the camera image. In contrast, the use of
PDs brings two unique challenges to Pulsar, near-far interference
and lack of spatial resolution. Here we describe how Pulsar meets
these challenges.

CF extraction. To elucidate the near-far interference problem,
we use a PD sensor to analyze the frequency-domain spectrum of
representative luminaries. Fig. 4(a)-(c) show that each light man-
ifests a peak CF, but with numerous side peaks. Fig. 4(d) further
shows the mixed light spectrum in an office room. We can see
that the faraway lights’ CFs are immersed in the spurious peaks of
close-by lights. Unlike camera-based system which only needs to
extract the single strongest peak in the spectrum, we cannot extract
multiple CFs by picking the strongest frequency components.

To overcome this challenge, note that we can compute the AoA
of each individual frequency peak. We observe that if different
frequency peaks have the same AoA, it is likely that they originated
from the same light. Thus, we pick the strongest peak for each
unique AoA, which corresponds to the true CF of one light. We
repeat this until the remaining peaks become negligible (likely to
be noise).

Identifying multiple lights. Despite the diversity of the CF,
occasionally there exist luminaries with barely distinguishable CF
values. LiTell [9] mitigated such collisions by combining two adja-
cent lights, which greatly lowers possibility of the collision. But it
requires the user to travel across lights, which precludes instanta-
neous location fix. Pulsar’s PD-based sensor can resolve a group



of lights’ CFs simultaneously, which enhances feature diversity
without user intervention. However, PD has no spatial resolution
and cannot recognize whether two lights are adjacent.

To overcome this barrier, for each observation, Pulsar uses all
the CFs it extracts as a feature collection, denoted as L. It then
searches for the set of lights in the database whose CFs are closest
to L in terms of Euclidean distance. Given the large number of
lights, a brute-force search among all possible groups is infeasible.
However, we can prune the search space based on two observa-
tions: (i) Frequency error of each light. Existing measurement study
[9] showed that the CF feature is highly diverse across a whole
building. It is also stable, varying only by tens of Hz across weeks.
Therefore, for each element in L, it suffices to put the few database
candidates with closest CF into the search space. (ii) Physical dis-
tance between each identified light. Since within each observation,
the sensor should see lights which are near each other, groups that
have candidates with large distance in their registered locations are
likely to be incorrect matches. We thus combine these two factors
into a score that describes how likely a match is valid.

2.3 Localization
Once Pulsar identifies multiple lights and computes the AoA of each,
it uses simple triangulation algorithm to derive its user’s location.

Specifically, AoA ϕi of the i-th light Li and the vector from the
sensor P = (x ,y, z) to the light form an equation:

cosϕi = (N · PLi)/(|N| |PLi |) (3)
where N is the normal vector of the sensor, measured by accelerom-
eters and a compass w.r.t. gravity. Location of lights Li (xi ,yi , zi )
are available in the database. Thus, with 3 lights, 3 such equations
can be used to solve the 3 unknowns in the sensor’s location. With
4 lights, even the heading direction can be solved, eliminating the
need for the error-prone compass.

Occasionally, Pulsar may not be able to extract 3 lights simulta-
neously. Fortunately, it can gracefully degrade to cell-level accuracy
with only one light in its FoV. When there are 2 observable lights,
the AoA enables Pulsar to compensate for the PD’s angular re-
sponse, which in turn allows it to empirically identify the closer
light.

2.4 Light Registration on Map
Ubiquitous deployment of VLP requires scalable landmark regis-
tration. Prior VLP systems assume a priori knowledge of the light
fixtures’ locations, but even the “smart” LEDs do not know their
own locations. The lights’ locations and identities are associated
manually, either by programming the bulbs or via a separate data-
base. Pulsar’s light registration scheme solves this problem by auto-
matically registers the lights’ locations on the building’s floor map,
eliminating the need for physically measuring the location of each
light. The lights’ locations can be translated into physical locations
given the scale of the map.

More specifically, a surveyor needs to start under a light with
known location (on the map), hold a Pulsar receiver and walk
across each of the lights inside the target building. Meanwhile,
the surveyor’s walking trajectory is tracked using existing motion
tracking methods. When Pulsar detects a light by an RSS peak, it

records the light’s CF and marks its 3D location the same as the
surveyor’s current 2D location (ceiling height is assumed known).

Our Pulsar prototype employs Google’s Tango tablet to track the
surveyor’s trajectory. Tango combines cameras and inertial sensors
to achieve decimeter precision with its visual-inertial odometry
(VIO). Due to inevitable drift of the inertial sensors, Tango’s preci-
sion degrades over long distances, so we partition the surveying
process into sections. The residual errors are small and can be com-
pensated through manual adjustment on the map, considering the
regular spacing of ceiling lights. The compensation can also be
automated by computer vision in the future.

Note that the light registration should not be confused with the
fingerprinting procedure in signature-based localization systems
[5, 8]. The fingerprinting entails extensive survey of all locations,
whereas Pulsar only needs a one-time walk-through of all light
landmarks which are much sparser.

3 CONCLUSION
To our knowledge, Pulsar represents the first VLP system that
employs incumbent FLs/LEDs and lightweight PDs to achieve con-
tinuous 3D localization with sub-meter precision. It marks a new
step in enabling the ubiquitous deployment of VLP, by solving three
problems: discriminating co-located LEDs/FLs, sensing AoA and
hence 3D location using single-pixel PDs, automatically register-
ing light landmarks. We believe Pulsar’s salient advantages will
enable a wide range of location-based services, including robotic
navigation, physical analytics and augmented reality.
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