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Visible Light Localization Using Conventional
Light Fixtures and Smartphones

Chi Zhang, Xinyu Zhang, Member, IEEE

Abstract—Owing to dense deployment of light fixtures and multipath-free propagation, visible light localization technology holds potential
to overcome the reliability issue of radio localization. However, existing visible light localization systems require customized light hardware,
which increases deployment cost and hinders near-term adoption. In this paper, we propose LiTell, a simple and robust localization
scheme that employs unmodified fluorescent lights (FLs) as location landmarks and commodity smartphones as light sensors. LiTell
builds on the key observation that each FL has an inherent characteristic frequency which can serve as a discriminative feature. It
incorporates a set of sampling, signal amplification, and camera optimization mechanisms, that enable a smartphone to capture the
extremely weak and high-frequency (greater than 80 kHz) features. We have implemented LiTell as a real-time localization and navigation
system on Android. Our experiments demonstrate LiTell’s high reliability in discriminating different FLs, and its potential to achieve
sub-meter location granularity. Our user study in a multi-storey office building, parking lot, and grocery store further validates LiTell as an

accurate, robust and ready-to-use indoor localization system.

Index Terms—YVisible light sensing, Visible light localization, Indoor localization, Smartphones, Signal processing, Image processing.

1 INTRODUCTION

NDOOR localization technology is bringing huge impacts

on human activities, in the same way that GPS did in
revolutionizing outdoor navigation. Existing market research
predicts that location-based services in retail industry alone
will generate 10 billion revenues by 2020 [1]. However,
after decades of research, there still lacks a solution with
desired simplicity and robustness. Recent field tests of state-
of-the-art localization schemes [2], [3] revealed a common
set of problems including high deployment overhead and
low reliability, concluding that robust meter-level indoor
localization remains an open problem, even in a small
sandbox environment (300 m?) with simple layout [2].

Radio-based localization techniques are most extensively
studied due to readily-available infrastructure. Prior research
has explored fingerprinting [4], [5], [6], propagation mod-
eling [7], and triangulation [8], [9]. However, the elusive
nature of radio signals renders them less reliable in real
environments, specifically due to three major challenges.
(i) Multipath reflections. Multipath reflections are strongly
dependent on the geometries and construction materials in in-
door environments, which defeats model-based approaches.
(i) Environment dynamics. Minor change in the environment
(e.g., adding a new furniture, human presence and mobility)
can substantially disturb the received signals strength (RSS)
and phase, thus compromising location estimation [2]. Even
the body orientation and holding position of devices (which
block the antenna in different ways) can cause 6 to 8 meters
of location error [10]. (iii) Device heterogeneity. Depending
on model, co-located smartphone devices can observe up to
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10 dB RSS differences [11]. In enterprise environments, access
points” dynamic channel selection and power control further
vary the signal features.

Visible light (VL) localization techniques hold potential
to overcome such fundamental limitations. Using ceiling-
mounted LEDs as beaconing devices, VL localization can
achieve sub-meter precision [12], [13], and can even de-
termine the orientation of a smartphone [14]. However,
almost all existing LED-based localization techniques require
customized beaconing circuits to be added to the LED driver
[15], which involve substantial retrofitting cost and are
unlikely to be adopted pervasively in the near term [16].
IDyLL [17] reuses existing lights as periodic landmarks to
complement dead-reckoning. However, the accuracy of dead-
reckoning becomes the performance bottleneck and the error
often rises to 8-10 m. Alternatively, low-cost barcodes can be
used for localization [18], but they are visually obtrusive and
requires additional deployment effort as well.

Inspired by research in electromagnetic interference (EMI)
detection [19], [20], we propose LiTell, a simple and robust VL
localization scheme that readily works with unmodified light
fixtures and commercial-off-the-shelf (COTS) smartphones.
LiTell uses incumbent fluorescent lights (FLs) as location
anchors, and smartphones as receivers. The key hypothesis is
that an FL’s driver acts as an oscillator with a resonance
frequency. Due to unavoidable manufacturing variation,
different FLs have different resonance frequencies, which will
cause each of them flickering at a characteristic frequency
(CF), a high frequency (> 80 kHz) that is imperceptible by
human and remains relatively stable in practice. LiTell uses
the CF as a discriminative feature among different FLs, which
in turn serve as location landmarks.

We have tested the hypothesis using a customized high-
speed light sensor. Our experiments demonstrate that the
CFs are highly diverse: among 500 FLs in an office building,
over 99% have a pairwise CF separation of more than
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20 Hz. The CF is also highly reliable: it is unaffected by
typical environment dynamics or human behavior, and varies
by only a few tens of Hz across several months. To our
knowledge, this represents the first study to characterize the
FLs’ optical frequency feature and use it to discriminate FLs.

However, many challenges emerge when sampling CF
with COTS smartphone cameras: (i) Low sampling rate. cam-
eras are designed for snapshotting low-motion scenes at
around 30 frames per second (FPS). The rolling shutter
mechanism, which allows a camera to capture several thou-
sand samples within one frame [14], [21], may alleviate the
problem, but the sampling rate remains insufficient. (i7) Low
sensitivity to high-frequency light signals. Camera sensors
have a limited dynamic range, majority of which is already
occupied by low-frequency but high-power (bright) signals
when capturing a real scene. Besides, substantial noise exists
in high frequencies, introduced by camera hardware (e.g.,
heterogeneity of color pixels, salt-and-pepper noise) and
spatial patterns of physical structures (e.g., latticed covers
around FLs). These factors immerse the CF signals in the
camera image’s noise floor.

To overcome camera’s low sampling rate, LiTell’s solution
builds on two observations. First, the CF is extremely sparse,
representing a single peak in the frequency spectrum. Second,
although cameras snapshot low-rate scenes, their analog
bandwidth can reach a few hundred kHz. Thus, when
sampled at a low rate, the CF will be “folded” back to low
frequencies due to aliasing [22]. By optimizing the camera’s
sampling mechanics (e.g., exposure time), along with the
rolling shutter effect, we are able to recover CFs well above
80 kHz. In addition, to combat the low-sensitivity issue, we
design a set of feature amplification mechanisms that synthe-
size consecutive captures of the FL, isolate the interference
from ambient spatial patterns and mitigate the noise from
camera hardware. These mechanisms substantially boost the
SNR, allowing the CF to be easily identified in the spectrum.

LiTell’s location matching mechanism is fairly simple. We
first use a light sensor to measure the ground-truth CF of
each FL luminary, and store the (location, CF) pair in a light
registration database. The registration overhead is bounded
by number of light fixtures, each taking only a few seconds,
instead of all possible locations. At run time, any smartphone
can capture images of a nearby FL, run the above sampling
and amplification mechanisms to identify the CF, and look up
the location from the database. To counteract occasional CF
feature collisions and drifts, LiTell uses every two consecutive
FLs as a location landmark. To ensure scalability, LiTell
can optionally fuse with other landmarks such as WiFi,
further limiting potential collisions. These afford light-cell
level localization, which translates into meter-level granularity,
considering the pervasive and dense deployment of FLs in
typical public buildings. In addition, LiTell takes advantage
of the scaling relation between the physical size and image
size of an FL, and use simple geometrical model to derive
the smartphone’s position relative to the FL. This enables
finer-grained localization with sub-meter precision.

We have implemented LiTell as a mobile app on Android
smartphones, and also prototyped an indoor navigation app
atop. Our microbenchmark experiments in a 4-storey office
building demonstrate that LiTell can identify the CF features
with high reliability. The identified features stay within 20 Hz
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Fig. 1. General circuitry model of FL.

of the ground-truth, with up to 2 m light-to-phone distance,
under various usage behaviors and environment conditions,
and across multiple generations of Android phone models
built from 2012 to 2015, on both front and back cameras.

To verify LiTell’s localization accuracy, reliability and
usefulness in the wild, we conduct a user study with
10 volunteer participants. The user study took place in 3
uncontrolled environments: an office building (~9000 m2,
119 FLs), an indoor parking lot (~2800 m?, 91 FLs), and
a grocery store (~1000 m?, 162 FLs). LiTell demonstrates
the following key features: (i) Accuracy and usability. LiTell
identifies the FLs with an average accuracy of 90.3% across
the 3 sites, which can reach over 98% with the help of WiFi.
Typically, it navigates the user to randomly selected POls
with 50% shorter time and 60% shorter distance consistently,
compared with using visual landmarks and labels. It adds
marginal overhead, compared with an oracle walking trial
(directly towards destination with known routes). (ii) Ro-
bustness. By using the CF as signature, LiTell’s localization
accuracy becomes unaffected by heavy human activities and
environment dynamics. To our knowledge, LiTell represents
the first ready-to-use, real-time localization system to achieve
a combination of such desirable traits.

The main contributions of LiTell can be summarized as
follows!: (i) We conduct the first comprehensive feasibility
study to verify the optical CF as a diverse and reliable feature to
discriminate FLs. (ii) We design a set of sampling and signal
amplification mechanisms that allow a COTS smartphone
to capture the CF feature and single it out from various
noises. (iii) We develop simple schemes that enable LiTell to
achieve robust and accurate localization, with light level and
sub-light level location granularity. The real-time version of
LiTell system is implemented on Android, and verified in
uncontrolled, multi-floor environment.

2 CHARACTERIZING FLUORESCENT LIGHTS
2.1 Fluorescent Light and Its Frequency Components

A fluorescent light (FL) produces visible light by striking
an arc across a tube lamp, causing the gas and fluorescent
material inside to glow. The amount of current passing
through the lamp determines the light intensity. FL driver
acts as the core circuitry for light generation. It converts the
AC mains voltage (110/220 V, 50/60 Hz) to a high-frequency
AC voltage to sparkle the fluorescent tubes [24].

Fig. 1 depicts a general model of FL driver. The AC
mains voltage first goes through some electromagnetic
interference (EMI) filters. The rectifier then converts it to DC
plus a residual AC component, whose frequency is doubled

1. A preliminary version of the work appeared in [23].
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Fig. 2. Experimental setup to measure FLs’
frequency features.

Fig. 3. Light intensity (a) waveforms at different time scales and (b) frequency components of FL.
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Fig. 4. Distributions of characteristic frequencies Fig. 5. CDF of differences in frequencies (A f)
between all FLs and FLs of the same model.

of FLs in the office building.

from the 50/60 Hz AC mains frequency to 100/120 Hz.
Afterwards, the core of the FL driver, an inverter, modulates
this DC into high-frequency AC to drive the fluorescent
tube. The resonance frequency of the inverter is determined
by a group of components [25]. Due to manufacturing
variation, values of these components usually vary within
5-20% range [26]. As a result, even among FLs of the same
model, their resonance frequencies tend to vary significantly.
The fluorescent tube then converts the high-frequency AC
current (generated by the inverter) into visible light. Due to
the frequency response of fluorescence [27], harmonics more
than a few MHz are nearly completely filtered out. In general,
the observable frequencies usually span a wide range from
above 40 kHz to 1 MHz.

Note that the components in the inverter also have large
temperature coefficients. This can cause the frequency to drift
by over 2000 ppm across the typical temperature range (e.g.
0-70 °C) [28]. However, since the temperature in most public
buildings is regulated, the temperature of the inverter should
also be stable, leading to actual frequency stability several
folds better. In what follows, we will verify the stability
through comprehensive measurements.

2.2 Feasibility of FL Identification

Based on the operating principle of FL circuitry, we hypothesize
that individual FLs can be discriminated by their frequency
characteristics. This section verifies this hypothesis through
comprehensive experiments, focusing on the uniqueness
and stability of frequency features. Fig. 2 illustrates our
measurement setup. We sample the FLs” optical emissions
using a customized high-speed light sensor comprising a
BPW34 photodiode (PD) and a 2-stage amplifier, whose
analog bandwidth is 1.6 MHz and output digitized by a
portable oscilloscope (PicoScope 2207A [29]).
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Frequency characteristics of FL's optical emission.
Fig. 3(a) plots the time series of light intensity from several
example FLs, including tube lights and compact FLs (CFLs) in
an office building. Observe that all the FLs” waveforms man-
ifest quasi-periodic patterns, both at ;1s and ms scales. The
periodicity becomes obvious in frequency domain (Fig. 3(b)).
More specifically, all the FLs have a fundamental frequency

Uniqueness of Frequency Characteristics

Fig. 6. Characteristic frequency converging dur-
ing the start-up process of one tube FL.

component within the 40-60 kHz range, followed by its
harmonics (i.e., integer multiples). Notably, the fundamental
frequency of each light can differ by a few kHz, which implies
the feasibility of discrimination. The 120 Hz AC component
(doubled from 60 Hz by rectification) and its harmonics are
also visible in the spectrum, but only span a few kHz in total.

It is worth noting that the dominant frequency always
occurs at 2x the fundamental frequency, and has a 20-
30 dB higher magnitude. This is because the inverter creates
different gains at the positive and negative halves of its sine
waves, resulting in a weaker frequency component with half
of the frequency [27]. As we will show in Sec. 4, when using
a smartphone, it is usually impossible to see the features
except for the strongest. Thus, we select the dominant frequency
as the characteristic frequency (CF) of the FL.

Diversity of CE. To see how diverse the CFs can be,
we measured over 500 tube FLs and CFLs in our 4-floor
office building. Fig. 4 plots the histogram of the CFs. The
results imply multiple types of FLs, with most CF features
ranging from 80-160 kHz. Each type’s CFs approximate a
normal distribution. Fig. 5 further plots the CDF of pairwise
differences in CF (denoted as A f) among the FLs. We observe
that only less than 0.1% of the pairs have Af < 10 Hz, and
0.2% have Af < 20 Hz, even among FLs of the same model.
This confirms the CF as a strong feature to discriminate FLs
at a large scale. In Sec. 5 and 7, we will provide analytical
justifications for the probability of feature collision and
implications for location discrimination.

2.2.2 Stability of Characteristic Frequency

Start-up profile of CF. Since the FL would heat up during
startup, its temperature and CF should drift during the
process. To characterize such drift, we cold start a tube FL and
measure its CF across 1 hour. Fig. 6 plots the CF (error bars
indicate std. across 16 snapshots at each 1-minute timestamp).
The frequency first overshoots by a few hundred Hz, and
then gradually decreases as the FL warms up. However, after
around 40 minutes, it converges to a stable CF with less than 20 Hz
fluctuation. For most commercial place and office buildings,
the internal FLs tend to keep on for a long time after the
start-up and remain heated-up, so the impact on the usability
of CF as a discriminative feature should be negligible.

Temporal stability of characteristic frequency. To verify
the temporal stability of CF, we measure the CF of 8
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Fig. 7. Short-term and long-term stability of characteristic frequency.

randomly selected FLs in our office building over short/long
term. All 8 FLs are of the same model. Fig. 7(a) plots the
CF values across 10 days, with 10 measurements per day
per FL (error bars denote 90th-percentile values). The CFs
demonstrate high stability, with variations within 20 Hz.
Since the measurements span different time of the day, with
different loads on the powerline, the results also imply that
the CF features are robust against different powerline loads
in large buildings.

We also evaluated the temporal stability over 15 weeks,
sampling on a random day in each week. The results in
Fig. 7(b) show slightly higher variation compared with the 10-
day short-term variation, which also increases the risk of CF
collision among FLs. As a result, for robust localization using CF
features, LiTell must be able to tolerate small amount of collisions.
Sec. 5 will introduce LiTell’s error tolerance mechanisms.

3 CAPTURING CF USING SMARTPHONES

Amid the photodiode sensors’ potential in discriminating FLs’
characteristic frequencies, fundamental challenges emerge
when we try to capture such high-frequency features using
smartphones, which are designed to capture static or low-rate
scenes?. In this section, we describe how LiTell overcomes
such challenges by exploiting camera as a generic optical
channel sampler.

3.1

Due to considerations in cost and speed, modern CMOS
image sensors used in smartphones usually expose different
rows in the image at different time, while pixels within each
row are exposed simultaneously (which can be summed
into a single sample). This is called the rolling shutter effect
[30] and can act as a sampling process with much higher
sampling rate than the framerate. As a result, smartphones
hold the potential for being used to sample high-frequency
light signals. On the other hand, this sampling frequency is
backed by high-quality hardware clock source, as opposed
to software running on top of an operating system (OS) that
controls the framerate. As a result, it is far more reliable
and stable than the framerate. We have tested 2 Nexus 5
phones (with method in Sec. 4.1) and found their sampling
rate to be extremely stable and consistent, varying only a few
ppm (parts per million, or less than 1 Hz error for 75 kHz
sampling rate) in typical conditions. This makes the rolling
shutter a reliable sampling mechanism.

Fig. 8 shows a simplified diagram of CMOS image sensor
and its sampling process. The image sensor’s rows are

Sampling Light Using Smartphone Cameras

2. Note that smartphones’ light sensors cannot capture the CF feature
because their sampling frequencies are limited to a few Hz.

1/75k —=  model ---
Open for Exposure == Held in Reset Oga V37K 7o=  model - -
1 b @0 N E
[ D20| oy :

%) » - ! Dol
g ;| - @30 MW
o 4 | © .40 | ’ AN
ERRRRE e 50 g
Columns Time 0 30 60 90 120 150 180

Frequency (kHz)
Fig. 9. Frequency response of a
camera under various exposure
time settings.

Fig. 8. A brief illustration of rolling
shutter.

opened for exposure sequentially. The delay between the
opening of adjacent rows is called sampling interval, denoted
as ts. Duration of opening for each row is called exposure
time, denoted as t.. The time between the start of exposure
of the first row and the end of the last row is the minimum
frame time or minimum frame interval, denoted as ty. Denote
N as the number of rows, we have t;, = ty/N. Inverting
both sides, we can obtain the effective sampling rate of the
rolling-shutter camera, which is f; = NRy.

Contemporary smartphones commonly support full HD
capturing (1920 x 1080 resolution at Ry = 30 FPS frame
rate). The corresponding lower bound of sampling rate is
thus f,; = 1080 x 30 = 32.4 Ksps, which is a thousand times
higher than framerate, but still below the Nyquist sampling
rate for typical FLs’ characteristic frequencies (> 2 x 80 KHz,
Sec. 2). In the following sections, we introduce how LiTell
recover CF with such insufficient sampling rate.

3.2 Preserving High-Frequency FL Features

The camera’s sampling duration ¢, depends on hardware
and is unaffected by the exposure time setting ¢.. In fact,
te > ts since exposure of different row can overlap as shown
in Fig. 8. However, the exposure process can be considered
as an integration (or moving-average filter), so t. does affect
the analog channel response of the camera and determines
its capability to capture high-frequency signals.

More specifically, at sampling time ¢ (after the beginning
of an exposure), the camera’s output is:

+oo
A(t) = / I(t)g(t — t)dr

— 00

M

where I(t) is the light intensity at time ¢, g(7 — t) is a gate
(rectangular) function that evaluates to 1 during (¢,¢ + te)
and 0 otherwise. Applying Fourier transform on both sides,
we have:

+oo . +oo .
F(A) = / I(r)e~727I7dr / g(~T)e~ 32774

—0o0 J—o0

=—F(I)-F(9) 2
where T' = t — 7. Now we can obtain the frequency response
of the sampling process as:

7 (A)] ,

HDN =7 = Pl = [sinc(fte) 3)

In practice, photoelectrons continue to accumulate during

the readout phase after exposure is completed [21]. Accord-

ingly, the integration time should be t. + t,, where ¢, is the
readout duration. So Eq. (3) should be updated as:

[H(f,te)| = |sinc[f(te +1,)]] )

To verify this frequency response model against actual
smartphones, we use the arbitrary waveform generator on Pi-
coScope to generate sine tones across a wide range of frequen-
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cies, which are then used to drive a white LED, serving as an
ideal optical source. We capture the signals using a Nexus 5
phone, which has a sampling rate f, = 1/t; = 75.1624 Ksps
according to our measurement (to be discussed in Sec. 3.3).
Fig. 9 plots the RSS of the captured sine signals (relative to
the DC baseline) across different frequencies, which reflects
the frequency response of the camera. The results reveal
that under a given exposure time setting, the camera’s
response follows the sinc function, which matches the above
model. Whereas Nexus 5’s advertised minimum exposure
time t. = 1/75586 s, the first notch of the sinc function
appears at ~1/65200 s, i.e., t. +t, ~ 1/65200 s > t., which
matches the refined model in Eq. (4).

Note that under a given exposure time setting, the cam-
era’s frequency response has notch points at k/(t. +t,), k =
1,2,---. If the characteristic frequency of an FL lies near
a notch, then the frequency feature will become extremely
weak. The adaptive exposure mechanism in LiTell is designed
to overcome such situations. Specifically, LiTell selects the
optimal exposure time ¢} to maximize the camera’s mean
response to the characteristic frequencies of all FLs (e.g.,
within the building of interest), i.e.,

L
ty = argmax ) _ |H(f;,10)] ()
j=1

where L is the number of FLs. ¢! indexes the exposure
time of the i-th exposure setting. Since all notches can be
avoided within limited number of exposure time settings, the
optimization can be solved by LiTell’s backend server offline
through an exhaustive search. Note that ¢, is a constant for
each camera and can be factory calibrated.

3.3 Recovering High-Frequency FL Features

The foregoing section reveals that the frequency response of
the camera remains high beyond the sampling rate. In other
words, signals with frequency higher than f,/2 can still be
sampled, since the analog bandwidth of the camera is much
higher than the digital sampling rate. LiTell leverages this
property to recover high-frequency signals.

It is well known that when sampling a high-frequency
signal at sub-Nyquist rate, the frequency component will be
aliased or folded back [22]. The rule of aliasing is simple:

o {(NHVL - RR<FNR <R o
¢ f_Nfs ng_Nfs<f8/2
where f, is the aliased frequency, f is the original frequency,
fs is the sampling frequency and N =0,1,2,---. Given f;,
we can derive a few candidates of f from the measured f,:

fe{f9|fg:Nfs:|:fa7N:OalaQa"'afg>0} (7)
where f; is a candidate estimation of f. For exam-
ple, fs = 75 kHz and f, = 15 kHz leads to f €
{15,60,90, 135, -+ kHz}, and for f, = 3 we have f €
{3,72,78,147,- - - kHz}. In practice we find all FLs have
f well above 40 kHz and below 200 kHz, so frequencies
beyond the range can be excluded.

Whereas the error in f, will be carried to the estimation
of f as is, the error in f; can get amplified in the process
when N is large. Since the difference among FLs" CF features
can sometimes be as small as a few tens of Hz (Sec. 2), this
calls for a precise calibration of f,. In practice, this can be
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done in factory since the sampling frequency of the camera is
derived from crystal oscillators and remains extremely stable
over time.

In our experiments and implementation, we use Pico-
Scope and an LED to send a 10 kHz calibration signal,
keeping other settings identical as in Sec. 3.2. We then run
MUSIC (an eigen spectrum analysis algorithm [31]) over the
camera-captured signals to get a super-resolution estimation
of the received normalized signal frequency f, (f, < 0.5).
The camera’s sampling frequency is then calibrated as:
fs =10 kHz/ f,,.

4 AMPLIFYING HIGH-FREQUENCY FEATURES

Although it is feasible to sample the FL’s high-frequency
characteristic signals using a camera, the signals can be
extremely weak — inherently, the FL is designed for zero-
frequency illumination signals, and camera for snapshotting
a still scene. In this section, we present a set of signal
processing and camera optimization mechanisms in LiTell
that together overcome these challenges.

4.1

Owing to the rolling shutter effect, LiTell can sample the
same FL at high frequencies across different rows of an
image. This assumes the FL is an ideal homogeneous light
source and fully occupies the camera’s FoV. But two practical
challenges can break this premise: (i) “Salt-and-pepper” noise
in dark area, though barely visible to human eyes, may create
substantial noise at high frequencies. (ii) Strong ambient
light (e.g., sunlight reflected to ceiling) may also raise the
noise floor. In LiTell, we address such challenges by isolating
irrelevant pixels from the camera image, which we refer to
as spatial noise and interference suppression (SNIS). We now
describe SNIS” major steps.

Cleaning up image for reliable contour detection. Un-
like modulated LEDs in previous works [14], [21], LiTell
faces two new challenges: (i) it must be able to isolate closely
placed FLs, which is common in many buildings; (i) it must
be able to process million-pixel images on smartphones with
minimum latency. These challenges make it difficult to follow
the exact procedures in [14], which applies blur to mitigate
noise, and then threshold the image into a black-and-white
mask to identify the light. We thus threshold [32] the image
into a mask first, and then use morphological opening and
closing [33], [34] on the mask, a classical image processing
algorithm that recovers a single shape by connecting densely
distributed dots, while removing noisy outliers. After such
step, the mask will only contain one or a few large connected
components, which speeds up light contour detection.

Generating a rigid contour. The morphological process-
ing yields a single shape which can be isolated by finding
the largest contour, but it leaves one problem unattended:
the shape is irregular, causing different number of pixels
in each row to be summed into the sample. Consequently,
the gain provided by summing varies across samples, which
introduces high-frequency artifacts in the resulting spectrum.
To solve the problem, we create a rigid bounding box around
the FL image following [34]. Since most light fixtures appear
rectangular on cameras, this method effectively minimizes

Spatial Noise and Interference Suppression
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inclusion of noisy pixels. It also ensures each row of the
image has the same number of pixels, which provides similar
summing gains. Otherwise, spurious frequency components
may be introduced by gain variation across rows.

Speeding up processing by sub-sampling. Processing
million-pixel images on a smartphone directly costs substan-
tial time, which hinders real-time localization. To speed it
up, we observe that the FL shape is quite regular and we
can shrink the entire camera image without corrupting the
contour of the FL. Therefore, we first subsample the image
to 1/256 of its original size, before the thresholding and
morphological processing. This allows LiTell’s processing
speed to grow from less than one picture per second to
roughly 10 pictures per second while preserving necessary
accuracy. After obtaining the bounding box, we scale up its
size/position, and select the pixels inside its boundary for
CF extraction.

Fig. 10 summarizes the entire workflow of SNIS. Since we
use RAW images for processing, all pictures are in grayscale.
A side product of SNIS is a geometrical outline of the FL,
which will be used for sub-light localization (Sec. 5.3). It also
isolates the light fixture containing the most pixels in the
picture, thus CFs from different lights will not get mixed
up. As light fixtures are a few orders of magnitude brighter
than other ceiling objects, the probability of spurious light
detection is extremely low. Since we find that tube FLs are the
most pervasive in public buildings, the SNIS mostly targets
these rectangular fixtures. For lights in other shapes, SNIS
will still bound them in a rectangular box, which inevitably
includes noisy background pixels and results in lower SNR.

4.2 Optimizing Camera Configurations

Isolating spatial frequency components. Many FLs
come with shades or covers that bear certain spatial patterns,
which creates noisy frequency components after the rolling
shutter sampling. To remove the spatial artifacts, we can

use a low-pass image filter. Such a filter must only be
applied to spatial features alone, i.e., filtering the signal
spatially before it enters the camera sensor. Otherwise, it will
destroy the temporal frequency components. In LiTell, we
use the camera’s macro mode to force the focus distance to
a minimum, thus defocusing the far-away FL by acting as a
spatial low-pass filter.

Fig. 11 plots an example spectrum measurement of an
office FL with patterned plastic covers. The spatial features
result in multiple peaks that are much stronger than the CF,
and vary depending on camera viewing angle and distance.
With defocusing, the impact is almost completely eliminated.

Overcoming interleaving in CMOS sensors. A camera’s
image sensor typically comprises millions of light sensors.
The sensors of different colors are interleaved with each
other [35] (Fig. 12). In practice, an FL's color may not appear
white to the CMOS sensor [36]. Thus, the image sensor’s
odd and even rows can have quite different responses
to the FL's signal, which again translates into unwanted
frequency artifacts. To counteract such gain mismatch, we
first obtain the mean values of even and odd rows to estimate
the different gains applied to each row, and then divide
the rows with the corresponding gain. Fig. 13 shows the
effectiveness of de-interleaving on a Nexus 5 smartphone. We
see that the interleaving induces a f,/4 frequency component,
which is even stronger than the characteristic frequency, but
completely removed after the gain compensation.

Optimizing ISO. A camera’s low-noise amplifier is
controlled by ISO number. The higher the ISO, the higher
the gain, and thus the more sensitive the camera is. In Fig. 14
we show how SNR of a tube FL’s CF feature changes with
different ISO settings. Overall, a higher ISO always results in
better SNR, implying that the improved sensitivity outweighs
the increased noise level. Thus, LiTell configures the camera
to the highest ISO to maximize SNR. Note that this choice
differs from LED-based visible light communication systems,
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which intentionally generate high-power flickering signals,
sufficient to be captured by the camera even at low ISO [14].

4.3 Image Combining and CF Extraction

Amplifying SNR via sequential imaging combination.
After the foregoing processing of a camera image, we obtain
a column vector, with each element being the sum intensity
of a row of pixels. To identify the peak frequency, we can
simply run FFT over the vector of samples. However, we
found this results in a low SNR of only around 2 dB under
typical conditions.

To boost the SNR, we capture multiple camera images,
and concatenate their samples into a long sequence as FFT
input. Image concatenation brings two immediate benefits:
(i) Higher frequency-resolution. Suppose fs and N denote the
sampling frequency and number of samples, respectively.
Denote L as the length of samples per image, which may
deviate from maximum image height due to SNIS. FFT opera-
tion’s resolution equals fuin = f5s/N [22]. To discriminate the
characteristic frequency of different FLs, our empirical results
show that at least 10 Hz resolution is needed (Sec. 5). So we
need to concatenate at least f;/10/L images, considering
SNIS may remove some noisy samples. For example, since
Nexus 5 has a sampling rate of roughly 75 Ksps and
each picture provides about 2000 samples (Table 1), we
concatenate 7 pictures to get a sufficient resolution of around
5 Hz. (ii) Higher processing gain. It is well known that FFT
can achieve a “processing gain” with more samples, i.e., the
peak frequency’s SNR increases logarithmically (in dB) as N
increases, assuming the noise power spread evenly over the
spectrum (i.e., white noise). Our experimental results, shown
in Fig. 15, indeed verifies this quantitative relation. However,
we note as N becomes large, SNR improves marginally
whereas the image processing time increases substantially.
We thus choose IV to be the minimum value that satisfies the
resolution requirement.

To see why such SNR gain exists, we build a simple ana-
lytical model. We first assume that samples are continuous.
Without loss of generality, we assume the CF signal has unity
power and noise has unity power spectral density (PSD).
Denote the CF as f;, and number of samples as N. The PSD
of signal F, and noise F,, (in linear units) are:

fa(f)zcs(f_fL)a -F7L(f):1 (8)
Now consider the finite FFT bin size fpi, = fs/N. Signal and
noise power collected by the bin covering f, can be obtained
by integrating the PSD across the bin:
Es =1, En:l'fbin:fs/N )
SNR = E,/E, = N/f; (10)
which indicates SNR would improve linearly with sample
length (logarithmically when in dB).

However, unavoidable discontinuities exist at image
boundaries. The concatenated samples thus consist rect-
angularly windowed image segments. Consequently, the
amplitude spectrum will be convoluted by a sinc function,
similar to PSK with random phase shifts. Denote number
of samples per picture as n, and sampling duration of each
picture as t. = n/ f, the signal PSD become:

Fo(f) ocsinc®((f — fr)t] 11)

7

Considering that the total power of the 2 signals should be
the same, i.e.:

[ ras= [ mpar=1 a2
0 0

and that

/0 sinc?[(f — fo)t]df = tlc/—thL sinc?(z)dz ~ g (13)

since t. > 1/fp (ie. t.fr, > 1). We can then obtain an
approximation of F.(f):

le .
Fo(f) = - sinc®[(f — fr)te] (14)
To derive energy collected by the finite FFT bin, we consider
2 extreme cases: when the center of the FFT bin aligns with
the signal, e.g. f € F1 = [fL — fo/2, fL + fb/2), and when
the edge of the FFT bin aligns with the signal, e.g., f € F» =

[fL, fL + fo) or f € Fo = (fL — f», fL]. The signal power
collected is:

o, [fo/2tfL
—/ sinc?[(f — fr)t.]df , center
T L
E‘/S - t fot+fr (15)
[T e - feds L edge

Although it is hard to see the trends of SNR in the
equations, illustrations of the integrals in Fig. 16 show that:
(i) Since the sinc function monotonically increases as fuin
decreases, the ratio between the area representing signal
and the one for noise increases, thus SNR maximizes when
foin — 0. (ii) The benefits will eventually diminish as the top
of sinc function flattens, as opposed to continuous case where
the SNR keeps increasing with sample length. (iii) When .,
decreases, the sinc function narrows but also becomes higher,
thus for the same SNR fy;,, can be larger.

We further verify the analysis with simulation, where
we use a single sine tone signal and white, Gaussian
additive noise. We then break the signal into segments
and add random phase shifts with uniform distribution.
Each simulation repeats 100 times. The results in Fig. 17(a)
verify that SNR grows with number of pictures, although
the discontinuous case benefits less than the continuous
case. Fig. 17(b) also shows that longer sample length per
picture benefits both cases. Thus, higher camera resolution is
desirable.

One caveat in image concatenation is that overwhelming
discontinuities occur near the edge, which again raises the
noise floor on the spectrum. We identified two underlying
reasons: (i) Camera lens vignetting, which makes outer area
of the image darker than the central areas; (ii) smartphone
not perfectly parallelizing the ceiling, resulting in one end
of the image brighter than the other. We use a simple
equalization procedure to mitigate these effects. Specifically,
we first fit each series of samples to a 6-order polynomial
function, which is common in lens correction and can
capture slow varying spatial response. Then we divide the
samples element-wise by this polynomial function since the
distortions are essentially multiplicative scaling. This restores
the samples to their undistorted form and avoids huge jumps
at concatenation points.

Identifying characteristic frequency in the spectrum.
After the foregoing processing on the image samples, most
spurious peaks have been removed, making aliased CF the
highest peak. We then run a 2-step search to identify the
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Fig. 17. Simulation results for SNR, against (a) number of pictures N,
and (b) number of samples per picture n.

peak frequency. We use Savitzky-Golay filter [37] on the
spectrum to get a smoothed spectrum, identify a coarse peak
region, and then search for the exact peak position within
the corresponding region of the original spectrum. The 2-
step approach helps preventing false positives when SNR is
marginal. Fig. 18 shows an example, where without filtering
a spurious peak can be misidentified as CE.

5 FEATURE MATCHING AND LOCALIZATION

LiTell uses a simple linear search algorithm to match the
smartphone-extracted CF with registered CF in the database.
Specifically, after obtaining an aliased copy of the CF, f,, we
first derive a collection F' of possible original CFs following
Eq. (7). For each f;, € F, we find the registered CF with
minimum difference. Finally, the f; with minimum matching
distance is considered as the FL's CF.

To guarantee accuracy, LiTell further uses history informa-
tion to provide tolerance against CF feature collision. Further,
we show that LiTell can also provide sub-light localization
accuracy whenever an FL falls into the camera’s FoV.

5.1 Multi-Light Matching

To ensure high accuracy in location matching, we leverage
the fact that the user typically passes multiple lights consec-
utively, allowing LiTell to use a group of consecutive lights
together as a location landmark as the user travels. From
a high level, multi-light matching provides an error-correction
mechanism for LiTell— the strict location relation between FLs
dictates that each FL only has a few candidate neighbors. Thus,
even if one FL within a group is mistaken, it may not
fundamentally change the Euclidean distance (in feature
space).

Asymptotic collision probability. To understand the
asymptotic benefit from multi-light matching, we first ana-
lyze the probability that a group of m consecutive lights is
not colliding with another group. As discussed in Sec. 2.2.1,
we can reasonably assume frequency of all V; lights fol-
low the same normal distribution, ie. f, ~ N(u,0),n €
{1,2,..., Ni}. A Gaussian fitting shows that the 2 types of
lights have = 90.25 kHz, o = 1.62 kHz and p = 138.25
kHz, o = 2.34 kHz, respectively. Consider the scenario when
one of 2 groups has CFs very close to the mean value y (i.e.,
fn,1 = p). Since in normal distribution probability density
peaks at p, this represents the worst case scenario where the
collision probability is the highest. The Euclidean distance
between their characteristic frequencies equals:

i AfyiD? = Zm: Afy;
i=1

i=1
(D?/0?) follows x?(m) distribution since Af,, = fn1 —
fn2 ~ N(0,02). For LiTell to distinguish 2 groups, we

(16)
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Fig. 19. Asymptotic collision prob-
ability of single and pair matching,
with different tolerances.

need D > ay/m, or (D?/0?) > (ay/m/o)?, where a is the
tolerance, i.e. minimum distinguishable frequency difference.
Denote P(k,m) as the CDF of x?(m) distribution, then the
probability of 2 groups’ feature not colliding with each other
equals:
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Frequency (kHz)
Fig. 18. Spectrum smoothing exam-

ple, dashed lines show maximum.

Py(m,a)=1-P [m (%)Z,m 17)

For the case of pairs (m = 2), P, = 1 — P [2(a/0)?,2].
Further, the worst-case probability of one particular pair not
colliding with any other pair is:

NP
Po(Npa)= [ Po(2,a) =Py(2,0)"
i=1,i#n
where N, is number of consecutive pairs and usually N, <
4N since each light can at most make 8 pairs at 8 directions
(including diagonals), and each pair is shared by 2 lights.
When m = 1, D reduces to normal random variable A f

and P, = {erfc [a/ (\/ﬁa)} }Nl 1. The asymptotic collision
probabilities for single light and pair matching under 10 Hz
and 20 Hz tolerance for o = 1.62 kHz are shown in Fig. 19.

Choosing group size. In LiTell, to avoid excessive sam-
pling, we set m = 2, i.e., using each consecutive light pair
as location feature. Yet even this small m is sufficient to
achieve high accuracy. For example, with the same parameter
a = 0.01,0 = 1.62 and the worst case scenario for pairs
N, = 4N, Eq. (18) gives P, ~ 98.5% for a region of 100
lights, and P,, = 97.0% for a region of 200 lights.

Empirical validation. We verify the effectiveness of
single-light and light-pair matching in an office building.
The database contains each ceiling FL's coordinate, and
characteristic frequency measured using the photodiode
(Sec. 2). We first evaluate the single-light matching by testing
over 4 regions containing 22, 28, 33 and 36 FLs, respectively
(Fig. 20). The accuracy (non-collision probability) turns out
to be 86.4%, 81.5%, 82.9% and 80.5%, respectively, slightly
lower than the asymptotic analysis. In contrast, with light-
pair matching, across 3 regions with 28, 64 and 119 lights, we
achieve an accuracy of 92.9%, 91.7% and 90.8%, much higher
than single-light matching. The results are summarized in
Fig. 21.

We emphasize that LiTell can distinguish which light in
the pair the user is currently at as long as CFs for the 2 FLs in
the pair are different, thus matching pairs will not comprise
localization granularity. Also note that LiTell uses a pair of
characteristic frequencies as a single landmark, so wrong
localization results will not propagate across different pairs.

(18)

5.2 Landmark Fusion

CF is a random feature beyond our control, and collisions will
eventually happen. Fusing LiTell with landmarks that have
allocated identities (e.g. WiFi access points and Bluetooth
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Fig. 21.

beacons) may make it more reliable and scalable. However,
the elusive RF channel of these landmarks may nullify their
benefits. Here we use WiFi to explore the accuracy improve-
ment brought by such fusion. Although sophisticated model-
based or fingerprinting-based WiFi localization schemes exist,
we only adopt the simple but coarse-grained access point
(AP) ID matching. We will show that this simple fusion
scheme can already achieve high reliability and accuracy
when combined with LiTell.

LiTell’s WiFi landmark fusion works as follows. During
the CF registration, LiTell also registers the BSSID with
strongest RSS around each light. We only consider 2.4 GHz
band due to hardware/channel heterogeneity across bands.
Since WiFi’s coverage is nondeterministic, in the runtime,
it is hard to define a subset of lights “near” each AP. Rather,
while LiTell is capturing the CF, it scans nearby APs and
obtains a list of BSSIDs B, sorted by their RSS. During FL
identification, multiple candidates are selected according to
frequency error of individual lights or light pairs. Then, for
each candidate, LiTell looks up its corresponding BSSID in
the database, gets its rank in B, or discards it if not in B,.
Finally, the candidate with the lowest rank (highest RSS) is
selected as the FL's identity.

We implemented the WiFi landmark fusion on Nexus
5 and tested it in an office building, with the number of
candidates empirically set to 4. An enterprise WiFi network
is present the building, with one AP per every 3 to 5 lights.
Fig. 22 shows that landmark fusion significantly improves
accuracy of FL identification, despite the nondeterministic
coverage of WiFi. Even by using individual CFs (“Ind.” in
the figure), LiTell’s accuracy reaches nearly 90% after fusing
with WiFi. For pair identification, LiTell’s accuracy gets close
to 100%, as it can correct occasionally erroneous matching
results produced by the elusive WiFi. These results show that
fusing LiTell with other landmarks with allocated identities,
even ones with nondeterministic coverage, can effectively
limit the collision domain for CF. Accuracy is thus decoupled
from total number of lights, making LiTell more scalable.

5.3 Achieving Sub-light Granularity

Cameras are designed to produce undistorted images. From
geometry relations in the image, we can derive information
that enables sub-light level accuracy, which decouples LiTell’s
granularity from the density of FLs. To simplify the problem,
we focus on the case when user holds the smartphone
roughly at level position in parallel to the ceiling fixture.
Then, the center of the camera image C corresponds to
smartphone location, since it points to the smartphone’s
projection on the ceiling.

We first observe that the geometry of lighting fixtures can
be easily known and added to LiTell’s database. Meanwhile,

Accuracy of single
and pair matching. Numbers
show # of lights in area.

Fig. 22. Accuracy of WiFi assisted Fig. 23. Sub-light localization
matching in area 3 (33 FLs) and 6 scheme in LiTell.
(64 FLs), for both single and pairs.

the SNIS in Sec. 4.1 can provide the geometry of the light in
the image. This allows us to establish the relation between
physical size and number of pixels in the image as a ratio g;.
Thus, we can get the smartphone’s position in terms of pixels
and then map it to physical location on the 2D plane. In the
case that the smartphone is held with an large pitch/roll
angle, the distortion on image can be compensated as shown
by [38].

Fig. 23 illustrates a smartphone’s FoV which captures an
FL but is not perfectly aligned with it. We use w, h and 0
to denote the width, height and tilt angle of the FL’s image.
L denotes the center of the FL, whose physical location is
known. C and P denote the center of the image and its
projection onto the light’s axle. The coordinate of L, C' and
P are denoted as (x;,y1), (Z¢, Ye) and (zp, yp), respectively.
By definition, LP 1L PC, thus LP - PC = 0. In addition,
tan(0) = (yp —wi)/(xp —x1), and (z1, y1), (z¢, ye) are known.
Consequently, we have 2 equations to solve 2 unknown
variables z;,, and y,, which in turn lead to |LP| and [PC]|
in terms of pixels. We then translate them back to meters
with g;. The resulting physical coordinate of C' gives the
smartphone’s position relative to the center of the light.

6 IMPLEMENTATION AND SYSTEM EFFICIENCY

CF registration. We use the photodiode setup (Sec. 2) to
collect 2 seconds of samples from each FL and identify its CF.
We then manually mark the FL's location on a map, whose
zero coordinate is defined at an anchoring FL near the build-
ing entrance. The map is later digitized into (location, CF)
and entered in LiTell’s database. The whole registration
process takes one student volunteer around 3 hours for a
medium-sized grocery store (~1000 m?, 162 FLs), which is
an order of magnitude faster than radio-based fingerprinting
[2]. Overall, LiTell’s registration process is simple, efficient and
non-intrusive, and involves no management/infrastructure cost in
realistic environments.

Smartphone app. We have implemented LiTell’s sam-
pling (Sec. 3) and feature amplification mechanisms (Sec. 4)
on Android. In particular, we use OpenCV [39] to implement
SNIS (Sec. 4.1). Further, we prototype a simple navigation
app that finds the shortest path towards a destination FL,
and navigates users with basic on-screen instructions (e.g.,
forward, left). Our experiments run on several popular
Android smartphones, whose camera capabilities along with
fs (measured following Sec. 3.3) are summarized in Table 1.
Unless noted otherwise, we use Nexus 5 for testing, with
default ISO 10000, 7 image samples per FL, and exposure
time set by the adaptive exposure scheme (Sec. 3.2).

Sever backend. Although LiTell can be implemented as a
self-contained app, we separated the database as a MATLAB
server for flexibility and analytics. LiTell’s smartphone app
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TABLE 1
Summary of camera parameters for the Android phones in our experiments.

Phone [ Year | Sensor | Resolution and Framerate ? | Estimated f; (Sec. 3.1) | f, (Sec. 3.3) | SNR (Sec. 7.1)
Nexus 4 2012 IMX111 3280 x 2464 (8 MP) @ 22.5 FPS 55.440 Ksps 56.3347 Ksps 4.24 dB
Moto X 2013 | OV10820 4320 x 2432 (10 MP) @ 30 FPS 72.960 Ksps 60.6981 Ksps b 9.20 dB
Nexus 5 2013 IMX179 3280 x 2464 (8 MP) @ 30 FPS 73.920 Ksps 75.1624 Ksps 10.26 dB

Nexus 5X 2015 IMX377 4032 x 3024 (12 MP) @ 34.97 FPS 104.910 Ksps 105.1089 Ksps 6.12 dB
LG G4 (Back) 2015 IMX234 5360 x 3016 (16 MP) @ 30 FPS 90.480 Ksps 91.3079 Ksps 5.83 dB
LG G4 (Front) | 2015 T4KA3 3280 x 2464 (8 MP) @ 30 FPS 73.920 Ksps 75.3481 Ksps 15.57 dB

a. Effective pixels (including inactive pixels) and maximum full-frame framerates, from sensor datasheets when available.
b. Sensor might be down-clocked. The best configuration available in its software is 1920 x 1080 @ 60 FPS, corresponding to 64.800 Ksps.

first processes the image following Sec. 3 and 4. Upon
receiving the processed samples from the app, the server
extracts aliased characteristic frequency (CF) f, (Sec. 4.3),
generates possible unaliased CFs (Sec. 3.3) and match them
to a specific FL using the pair matching algorithm (Sec. 5.1).
It then returns navigation instructions to the smartphone
app. In case the matching confidence is low, the app will
instruct the user to move to the next light for rematching.

Theoretically, it is possible to offload all the processing
to the server. However, this requires sending huge RAW
images (~16 MB each) to the server, which makes wireless
network the bottleneck, especially when there are multiple
LiTell clients. With future deployment of faster and more
efficient wireless networks and edge computing facilities [40],
offloading the entire processing may make a better tradeoff
for performance and energy efficiency. On the other hand,
when network connection is unavailable, or when location
privacy is of utmost concern, it is feasible to migrate the
server side processing entirely into the app by preloading
the database.

7 EXPERIMENTAL EVALUATION

LiTell aims at combining the accuracy and robustness of VL
localization with existing lighting infrastructure. In Sec. 7.1,
we first evaluate LiTell’s robustness against environment,
devices, and human behavior. We then characterize LiTell’s
sub-light level localization precision in Sec. 7.2. In addition,
we evaluate LiTell’s energy efficiency and latency. Finally,
in Sec. 7.4 we put LiTell in the wild to test its real-world
performance and effectiveness.

7.1 Robustness

Light-to-camera distances. We put a smartphone under
a single FL, vary the light-to-camera distance (measured
using a laser ranger [41]), and measure the SNR and CF.
Each measurement repeats 5 times. Fig. 24 shows that SNR
decreases proportionally to distance, but remains high (>
3 dB) even at a distance of 2 m.

Fig. 24 also plots the 90th-percentile CF variation under
different noise conditions, with dark green line showing
ground-truth CF and gray area showing 20 Hz tolerance
(Sec. 5). As long as the SNR exceeds 3 dB, the variation
stays within the 20 Hz tolerance. This implies that LiTell can
robustly capture the CF features for a light-to-camera distance of
up to 2 m, which is longer than ceiling-to-smartphone heights in
most cases.

It is worth noting that SNIS nearly doubles the usable
range for LiTell. In some cases, we found the spectrum
smoothing in Sec. 4.3 helps identify CF even under negative

SNR, which indicates its importance when SNR is marginal.
Due to limited SNR of smartphone cameras, we do expect
LiTell to fail for ceilings much higher than our office building,
especially with front-facing cameras due to their lower
resolution. However, we find that a range of 2 m will already
enable LiTell in many public buildings that need accurate
localization service.

Temperature. Recall an FL's electronic component ratings
and hence stability of its CF is affected by temperature. We
evaluate the impact in a small office, where we control the
temperature settings via a thermostat and verify the change
using a DS18B20 sensor [42] (0.1°C precision). Fig. 25 shows
that the CF decreases as temperature increases, which is
consistent with the heat-up behavior in Fig. 6. However,
within 4°C temperature gap, the CF fluctuates by less than
20 Hz, well within LiTell’s stability tolerance (Sec. 5). Since
the temperature in most public buildings tends to be tightly
regulated, LiTell is robust across temperature changes in typical
requlated indoor environments.

Meanwhile, we also tested LiTell in an outdoor parking
ramp and do find the CF becomes unusable due to large
(> 10°C) air temperature variations. Currently, we see offices
and shopping centers as LiTell’s target application scenarios,
where room temperature is always tightly regulated. For
example, during a period covering winter and early summer,
CFs of FLs in our office building did not drift significantly
enough for re-registration to be necessary. However, for
places with unregulated temperature, it might be possible to
derive a CF-vs-temperature model for each FL model, and
use it to compensate the CF database.

Ambient light. To evaluate LiTell’s robustness against
ambient light interference, we put the smartphone 1.5 m
away from a tube FL close to a window. The experiment
started on a sunny day at 2:30 pm until sunset. A Lux
meter [43] is placed nearby to track ambient light intensity.
Fig. 26 shows that LiTell consistently captures the CF with
more than 3 dB SNR except for extreme cases. In contrast,
when LiTell’s SNIS is disabled, the SNR drops to 0 dB under
sunlight interference, making it impossible to discriminate
CF from noise. Therefore, SNIS not only improves SNR, but
also makes LiTell more robust under ambient sunlight interference.
Meanwhile, the SNR is negatively impacted by the sunlight.
when coupled with other factors (e.g. higher ceilings), LiTell
might fail for lights installed near windows on a sunny day.
However, we expect this to be a rare case, and does not
prevent operation in internal regions of the building.

Different buildings. To test LiTell’s robustness and
accuracy in the wild, we set up LiTell in 3 different venues
(Fig. 27): an office building (~9000 m?, 119 FLs, ceiling height
~3.0m, ~5 m FL separation), an underground parking
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detection accuracy.

Fig. 27. Photos of buildings. From left to right:
office building, parking lot, grocery store.

lot (~2800 m?, 91 FLs, ceiling height ~2.8 m, ~8 m FL
separation), and a medium-sized grocery store (~1000 m?,
162 FLs, ceiling height ~4.0 m, contiguously placed FLs).
The experiments were conducted approximately two months
after FL registration, with landmark fusion disabled to
explore the worst case performance.

Fig. 28 plots the FL identification accuracy, with error bars
showing min/max across 10 trials. Across all venues, LiTell
can discriminate the FLs with mean accuracy of 90.3% and
a small variation of 11% from the best to the worst, which
is very close to results obtained in controlled environments
(Fig. 21), despite different light models, distribution and
ceiling heights. In particular, FLs in the grocery store are
closely placed in lines 2 m away from the phone, resulting
in multiple lights being captured simultaneously. However,
LiTell’s SNIS mechanism can successfully isolate the lights, and
only include the nearest one with the largest area in the image.
Additionally, busy customers in the grocery store and moving
cars in the parking lot did not degrade LiTell’s accuracy, since the
CF feature is deterministic. The results also show temperature
in most indoor environments is stable enough for LiTell to operate.

Smartphone models. LiTell’s CF extraction performance
may be affected by different smartphone models, with
varying resolution and speed (which determine the rolling-
shutter sampling rate) and sensor quality (which determines
SNR). Whereas it is infeasible to exhaust all smartphones, we
test 5 of them representing different generations that were
launched in the past 5 years, by sampling a tube FL 1 m away.
Each phone is equipped with the latest stock ROM available
at the time. Table 1 summarizes the measurement results.
Despite the different camera capabilities, all the phones can
detect the CF with high SNR (> 6 dB except for Nexus 4
and back camera of LG G4). It is worth noting that Nexus 4
and Moto X do not allow fine-grained exposure time or
ISO configuration, and only allow JPEG imaging which may
distort the CF features due to non-linear processing [44].
The SNR of detected CF is relatively lower, but still exceeds
LiTell’s 3 dB minimum requirement, based on LiTell’s other
camera optimization mechanisms. The SNR also seems to
be affected by multiple factors, instead of just monotonically
growing with number of pixels. These factors might include
sensor model, lens configuration and f; (since frequency
response changes with f;, Sec. 3.2). We also notice that the

Fig. 25. Impact of room temperature.
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Fig. 28. Accuracy across buildings. “O”: office
building, “P”: parking lot, “G”: grocery store.

Fig. 26. SNR variations with ambient light inten-
sity.
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Fig. 29. Impact of human behavior.

front camera of LG G4 works with sufficient margin in SNR.
We expect in the future more and more smartphones will
have high-quality selfie cameras that can support LiTell.

Human behavior. We also verify that LiTell can work
consistently across different users, whose usage behaviors
may vary. In the experiment, we sample an FL from various
directions and while walking. To cover extreme scenarios,
we hold the smartphone within 1 m to the FL, so the viewing
angle can change rapidly with position. Then we create the
following test cases: (i) normal test case: the phone is placed
level right under the FL and aligned with its tube direction.
(ii) rotate case: the phone is misaligned with the tube by about
30°; (iii) tilt axial / lateral case (“T. Ax.” and “T. Lat.”): the
phone photos the fixture sideways from the axial and lateral
direction of the tube; (iv) walking axial / lateral case ( “W. Ax.”
and “W. Lat.”): the user walks across the FL along its axial
and lateral directions.

Fig. 29 shows that LiTell successfully detects the CF in
all the cases, with 90th-percentile deviations of less than
10 Hz. The SNR is consistently above 3 dB by a large
margin. This shows that LiTell’s CF detection and amplification
mechanisms make it robust to the extra variation in light intensity
and effects caused by elusive usage behaviors. More specifically,
the sampling and processing work fast enough to ensure the
CF remains visible during capture of 7 images. LiTell’s SNIS
is also robust against placement and shape, and the macro
defocusing mechanism can successfully filter spatial features,
leaving only the temporal frequencies in the spectrum.

7.2 Localization Precision

To evaluate the granularity of sub-light localization, we use
a light fixture with a 1.2-meter-long tube FL, 1.8 m above
the phone. We place the phone on a motored slider [45]
and move it to 20 locations 5 cm apart from each other in a
1.1 m x 0.4 m area (limited by slider length and camera FoV).
We record the localization error of 10 attempts, and then
repeat the experiment with a user holding the phone while
“walking” on the spot. Fig. 30 shows that LiTell can achieve
10 cm accuracy 90% of the time if placed still and level. When
held by a walking user, the phone is no longer strictly level,
which affects LiTell’s geometrical model (Sec. 5.3). But the
median precision is still as high as 15 cm and 90% at 25 cm.
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Fig. 31. Combined performance of
FL identification and sub-light local-
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Fig. 34. Sub-light localization results.

As the distance gets larger, the physical distance that a
pixel covers also increases linearly, so the error will grow
linearly with distance. Considering most buildings have
heights less than 5 m and users usually hold the smartphone
at least 1 m above the floor, the error of sub-light localization
should remain below 0.5 m in most cases.

To profile the combined performance of FL identification
and sub-light localization, we selected a rectangular open-
office space with 23.7 m x 6.4 m area and 3.1 m ceiling height,
in which the ground-truth location can be conveniently
measured. We registered 56 unique 1.2-meter-long tube FLs
(2 per fixture) in the area, which are arranged in rows 3.3 m
apart. We then picked 5 random spots that have the light
in the smartphone camera’s FoV when laid flat. For each
spot, we hold the smartphone 1.7 m below the light, against
a piece of fixed furniture and record 50 localization results.

Fig. 34 zooms in on the localization results, with errors
shown in arrows. Except for occasional misidentifications,
all the localization results are tightly-packed around the
ground truth, thanks to deterministic visible light channel
high-resolution of the camera. Fig. 31 further shows the end-
to-end localization precision, with median at 17 cm and 90th-
percentile at 37 cm. The long tail is caused by misidentified
FLs, which are located far away from the ground-truth.

7.3 Latency and Efficiency

On Nexus 5, our LiTell implementation takes 92 £ 35 ms
to process each image, and around 700 ms for 7 images.
We find that a majority of the processing time is due to
suboptimal implementation (Java instead of native C) of the
gluing operations, which cost around 70 ms per image. We
hence believe that with proper optimization, the computation
can be done within one frame interval (33 ms for 30 FPS),
allowing 7 pictures to be captured and processed within
233 ms. For the database server, all computation (including
CF extraction and matching, Sec. 3.3, 4.3 and 5.1) takes 112 ms
per request on average while running on a laptop with Intel
Core i5 3340M CPU. Experiments in our office building show
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an average end-to-end location query-response time of 1.62 s,
which is tolerable for most applications.

We profile the energy consumption of the LiTell app using
the Monsoon Power Monitor [46]. The Nexus 5 consumes
741.84 £ 11.52 mW when idle, 2001.60 + 28.50 mW when
the camera’s viewfinder is active, and 2669.69 £ 29.47 mW
when the LiTell app is capturing, processing and sending
simultaneously. As Nexus 5 has a 8.74 Wh battery [47],
and a localization attempt only lasts ~2 s and consumes
~1.20 mWh energy, the smartphone can support thousands
of localization attempts per battery cycle.

We build LiTell on top of cameras due to their availability
on COTS smartphones. This leads to unnecessarily high
power consumption as information from most pixels is dis-
carded and wasted. In the future, however, efficient and high-
speed photodiodes used by visible light communications
(VLC) may become increasingly available on COTS devices.
LiTell can be adapted to leverage photodiodes as high SNR,
alias-free and energy-efficient light sensors. On the other
hand, LiTell could use the slow but low-power ambient light
sensors to determine when to turn the camera on, which may
help reduce energy consumption considerably.

7.4 User Study and Field Tests

To test LiTell’s effectiveness in indoor navigation, we re-
cruited 10 volunteer users who frequent the venues, but may
not have precise knowledge of all the points of interest (POI,
e.g., room number). Average height of the users is around
1.7 m. We randomly select 6 targets in the office building in
Fig. 27: 1, 4 and 5 are on the 1st floor, while 2, 3 and 6 are on
the 2nd. In addition, 5 and 6 are in a corner of the building
not far from the entrance. The oracle routes vary from 35 m
to 132 m including the stairs, each containing at least one
turn. The trials are conducted at different times of the day,
with human activities around most of the time. In each test,
we ask a participant to start from the building entrance, and
find a random POI which may be on a different floor. We
perform 3 sets of trials: (i) Controlled test: A user finds the
POI with common sense or help available (maps on walls,
direction signs and people walking by). (ii) LiTell test: A user
(different from the controlled one) uses the LiTell navigation
app to find the same POL. (iii) Oracle baseline. After the above
two tests, we let all users know the shortest path and walk
directly to the POL

In each test, we follow the user and record the walking
time and path on a map. Then, we derive the extra distance
and percentage of extra time spent on navigation for test (i) and (ii),
by subtracting the oracle baseline from them. We use percentage
in walking time to compensate for different walking speeds.
Since the prototype LiTell implementation uses back cameras,
the users sample the light with the phone facing down when
requested by the app, and then turn the phone upright
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again to read instructions, which causes some unnecessary
overhead in time consumption.

Fig. 32 shows the extra time cost w.r.t. the oracle. Com-
pared with the controlled tests, LiTell saves different amount
of time depending on how hard the target can be found.
Particularly, target 5 is only about 35 m away from the
entrance point, and even the controlled group can easily
find it with only 7 seconds of extra time compared with the
oracle baseline. However, when the user is unfamiliar with
the target POI, LiTell can save over 50% time on average
compared with the control group, for both single-floor and
cross-floor navigation. On the other hand, LiTell’s extra
time cost w.r.t. oracle is consistent at roughly 40% across all
targets, regardless of distance, usage habits, area, number of
turns or floors. This again confirms that LiTell’s CF extraction
mechanism is robust against practical usage scenarios.

Fig. 33 further plots the extra distance cost w.r.t. the
oracle. Extra distance needed by LiTell is typically only a few
meters, owing to its high localization precision. Interestingly,
we find even for the users who frequent the building,
their trajectory can be highly suboptimal, and LiTell can
help prevent them from traveling to wrong places or along
detour paths. The average distance saving can be 50-70 m
for POI 2, 3 and 4, and up to 120 m for certain users.
Compared with such distance saving, the time saving in
Fig. 32 might seem relatively small. This is mainly due to
LiTell’s processing overhead in each localization attempt. We
believe an optimized implementation (Sec. 6) can cut the
time overhead and enable real-time navigation.

8 LIMITATIONS AND FUTURE WORK

Ubiquity of FL vs. LED. While LEDs are likely to replace
FLs eventually, current progress is slow. The main reason is
that FL has already saturated the market, and its low cost
and availability still lead to new deployment. Moreover, LED
hardware still bears certain limitations, such as lower color
quality, narrow beam angle and lower lumen output [48].
Thus, the US Department of Energy [16] predicts that FLs
will continue dominating the market, occupying more than
60% of the market till 2020, and 30% to 40% till 2030. From
our experience, buildings with any LED lighting remains
scarce for now, and even in these buildings the major force
of lighting is still FL. In addition, LEDs used for commercial
lighting differ from “smart” bulbs that can send unique
beacons. Due to cost, size and management issues, we expect
“smart” bulbs and regular LED bulbs or even FLs to be
deployed together in the future, and systems that work with
regular LED/FLs will still have unique values.

Most high-power LEDs are driven by constant current
drivers, which oscillate much like FL drivers [49]. Since
LEDs are driven by DC, manufacturers tend to add output
capacitors to suppress the switching noise of the driver,
which attenuate the characteristics frequency (CF) severely.
From our measurements, some LEDs exhibit CFs that are
60 dB weaker than the 120 Hz and DC signal, while others
do show very strong CF. Due to limited SNR of cameras,
current LiTell system may not work with all varieties of
LEDs. However, once high-SNR, high-speed light sensors (e.g.
photodiodes used in VLC [50]) are available on smartphones,
LiTell will also work with majority of the LEDs.
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Long-term CF drifts. Across our nearly half-year ob-
servation, the CFs of experimented FLs did not change
significantly. But over a longer term, the CF change might
eventually happen, e.g. due to severe aging or replacement of
worn-out lights. When such change occurs, LiTell will either
give low confidence in matching, or find user’s trajectory to
be discontinuous. Users may choose to allow the localization
server to analyze such matching confidence, and then isolate
and correct for the changes.

Seamless operation. Nearly all VL localization systems
need line-of-sight channel to work. Together with limited
FoV of cameras (usually ~70° [51]), this makes it hard to
achieve continuous and seamless coverage (e.g. when device
is in the pocket or light falls out of FoV), and may preclude
applications that require silent or continuous localization.
On the other hand, the high accuracy and robustness of VL
localization make them ideal for robotics or applications that
are actively initiated by the user, such as navigation and
inventory search. As a result, LiTell and other VL localization
systems are highly valuable and can complement WiFi-based
localization systems.

Co-located lights. When multiple lights are installed
closely to each other, especially in parallel, LiTell’s SNIS
(Sec. 4.1) may have difficulty telling them apart. Conse-
quently, multiple frequencies will be extracted from the
spectrum. However, LiTell will only pick the strongest one,
which still maps to the correct light. Potentially, such co-
located lights can also enrich the CF feature, and allow
multi-light matching (Sec. 5.1) without traveling between
lights. Meanwhile, sub-light level accuracy might suffer as
the geometry of the light is wrong. This can be avoided if
the geometry of the whole fixture, instead of the individual
lights, is registered in the database.

9 CONCLUSION

In this paper, we explore the feasibility of using unmodified
FL fixtures to build a robust indoor localization system. We
design and implement LiTell, a system that can discriminate
subtle differences in the weak, high-frequency characteristics
of FLs” emission, utilizing COTS smartphones’ cameras aug-
mented with customized sampling/amplification algorithms.
Our field tests show that LiTell holds the promise as a
ready-to-use, easy-to-deploy indoor localization system that
is robust against environment and user habits. We believe
LiTell leads to a new direction for robust, infrastructure-free
indoor localization with visible light.
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