

Vision-Precision Ubiquitous Indoor Localization

Using Conventional Lights

Chi Zhang (UW-Madison), Xinyu Zhang (UC San Diego)

Indoor Localization

Navigation Analytics Interaction

Current Practice: Wi-Fi

Maccurate Meters of error

Fragile Easily affected by dynamics

Future Promise: * Visible Light Positioning

Approach (1): Camera + Photogrammetry

Report Narrow View

Low Sensitivity

Energy-Hungry

Z Long Latency

Approach (2): The Photodiode + Intensity Model

Model is Unrealistic

Obstruction Breaks model

Above All: Require Extra Beacon Hardware

≥ Departure from the Regime

Retrofitting is costly?

Reuse existing lights!

Intensity is unreliable?

Enable photodiode-based AoA sensing!

Reusing Existing Lights

How to Identify Lights without Beacons?

Oscillation in Driver → High Frequency Flicker

Ubiquitous \rightarrow Stable

Manufacturing Error → Diversity in Oscillators **©** Unique

"Characteristic Frequency (CF)"

Turn Existing Lights into Location Landmarks

AoA from Photodiodes

Visible Light: No Phase!

Photodiodes: No Spatial Resolution!

Need New Tricks

Q Localization

Accuracy: 10cm / 5°

EPrototype

& Resources

Chi Zhang, Xinyu Zhang, "Pulsar: **Towards Ubiquitous Visible Light** Localization", ACM MobiCom'17

Chi Zhang, Xinyu Zhang, "LiTell: Robust **Indoor Localization Using Unmodified** Light Fixtures", ACM MobiCom'16

